eden/src/dynarmic/tests/print_info.cpp
crueter 51b170b470
[cmake] refactor: Use CPM over submodules (#143)
Transfers the majority of submodules and large externals to CPM, using source archives rather than full Git clones. Not only does this save massive amounts of clone and configure time, but dependencies are grabbed on-demand rather than being required by default. Additionally, CPM will (generally) automatically search for system dependencies, though certain dependencies have options to control this.

Testing shows gains ranging from 5x to 10x in terms of overall clone/configure time.

Reviewed-on: https://git.eden-emu.dev/eden-emu/eden/pulls/143
Reviewed-by: CamilleLaVey <camillelavey99@gmail.com>
2025-08-04 04:50:14 +02:00

345 lines
12 KiB
C++

// SPDX-FileCopyrightText: Copyright 2025 Eden Emulator Project
// SPDX-License-Identifier: GPL-3.0-or-later
/* This file is part of the dynarmic project.
* Copyright (c) 2018 MerryMage
* SPDX-License-Identifier: 0BSD
*/
#include <algorithm>
#include <cctype>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <map>
#include <optional>
#include <string>
#include <fmt/format.h>
#include <fmt/ostream.h>
#include <mcl/bit/swap.hpp>
#include "dynarmic/common/common_types.h"
#include "dynarmic/common/llvm_disassemble.h"
#include "dynarmic/frontend/A32/a32_location_descriptor.h"
#include "dynarmic/frontend/A32/decoder/arm.h"
#include "dynarmic/frontend/A32/decoder/asimd.h"
#include "dynarmic/frontend/A32/decoder/vfp.h"
#include "dynarmic/frontend/A32/translate/a32_translate.h"
#include "dynarmic/frontend/A32/translate/impl/a32_translate_impl.h"
#include "dynarmic/frontend/A64/a64_location_descriptor.h"
#include "dynarmic/frontend/A64/decoder/a64.h"
#include "dynarmic/frontend/A64/translate/a64_translate.h"
#include "dynarmic/frontend/A64/translate/impl/impl.h"
#include "dynarmic/interface/A32/a32.h"
#include "dynarmic/interface/A32/disassembler.h"
#include "dynarmic/ir/basic_block.h"
#include "dynarmic/ir/opt/passes.h"
using namespace Dynarmic;
const char* GetNameOfA32Instruction(u32 instruction) {
if (auto vfp_decoder = A32::DecodeVFP<A32::TranslatorVisitor>(instruction)) {
return vfp_decoder->get().GetName();
} else if (auto asimd_decoder = A32::DecodeASIMD<A32::TranslatorVisitor>(instruction)) {
return asimd_decoder->get().GetName();
} else if (auto decoder = A32::DecodeArm<A32::TranslatorVisitor>(instruction)) {
return decoder->get().GetName();
}
return "<null>";
}
const char* GetNameOfA64Instruction(u32 instruction) {
if (auto decoder = A64::Decode<A64::TranslatorVisitor>(instruction)) {
return decoder->get().GetName();
}
return "<null>";
}
void PrintA32Instruction(u32 instruction) {
fmt::print("{:08x} {}\n", instruction, Common::DisassembleAArch32(false, 0, (u8*)&instruction, sizeof(instruction)));
fmt::print("Name: {}\n", GetNameOfA32Instruction(instruction));
const A32::LocationDescriptor location{0, {}, {}};
IR::Block ir_block{location};
const bool should_continue = A32::TranslateSingleInstruction(ir_block, location, instruction);
fmt::print("should_continue: {}\n\n", should_continue);
Optimization::NamingPass(ir_block);
fmt::print("IR:\n");
fmt::print("{}\n", IR::DumpBlock(ir_block));
Optimization::A32GetSetElimination(ir_block, {});
Optimization::DeadCodeElimination(ir_block);
Optimization::ConstantPropagation(ir_block);
Optimization::DeadCodeElimination(ir_block);
Optimization::IdentityRemovalPass(ir_block);
fmt::print("Optimized IR:\n");
fmt::print("{}\n", IR::DumpBlock(ir_block));
}
void PrintA64Instruction(u32 instruction) {
fmt::print("{:08x} {}\n", instruction, Common::DisassembleAArch64(instruction));
fmt::print("Name: {}\n", GetNameOfA64Instruction(instruction));
const A64::LocationDescriptor location{0, {}};
IR::Block ir_block{location};
const bool should_continue = A64::TranslateSingleInstruction(ir_block, location, instruction);
fmt::print("should_continue: {}\n\n", should_continue);
Optimization::NamingPass(ir_block);
fmt::print("IR:\n");
fmt::print("{}\n", IR::DumpBlock(ir_block));
Optimization::A64GetSetElimination(ir_block);
Optimization::DeadCodeElimination(ir_block);
Optimization::ConstantPropagation(ir_block);
Optimization::DeadCodeElimination(ir_block);
Optimization::IdentityRemovalPass(ir_block);
fmt::print("Optimized IR:\n");
fmt::print("{}\n", IR::DumpBlock(ir_block));
}
void PrintThumbInstruction(u32 instruction) {
const size_t inst_size = (instruction >> 16) == 0 ? 2 : 4;
if (inst_size == 4)
instruction = mcl::bit::swap_halves_32(instruction);
fmt::print("{:08x} {}\n", instruction, Common::DisassembleAArch32(true, 0, (u8*)&instruction, inst_size));
const A32::LocationDescriptor location{0, A32::PSR{0x1F0}, {}};
IR::Block ir_block{location};
const bool should_continue = A32::TranslateSingleInstruction(ir_block, location, instruction);
fmt::print("should_continue: {}\n\n", should_continue);
Optimization::NamingPass(ir_block);
fmt::print("IR:\n");
fmt::print("{}\n", IR::DumpBlock(ir_block));
Optimization::A32GetSetElimination(ir_block, {});
Optimization::DeadCodeElimination(ir_block);
Optimization::ConstantPropagation(ir_block);
Optimization::DeadCodeElimination(ir_block);
Optimization::IdentityRemovalPass(ir_block);
fmt::print("Optimized IR:\n");
fmt::print("{}\n", IR::DumpBlock(ir_block));
}
class ExecEnv final : public Dynarmic::A32::UserCallbacks {
public:
u64 ticks_left = 0;
std::map<u32, u8> memory;
std::uint8_t MemoryRead8(u32 vaddr) override {
if (auto iter = memory.find(vaddr); iter != memory.end()) {
return iter->second;
}
return 0;
}
std::uint16_t MemoryRead16(u32 vaddr) override {
return u16(MemoryRead8(vaddr)) | u16(MemoryRead8(vaddr + 1)) << 8;
}
std::uint32_t MemoryRead32(u32 vaddr) override {
return u32(MemoryRead16(vaddr)) | u32(MemoryRead16(vaddr + 2)) << 16;
}
std::uint64_t MemoryRead64(u32 vaddr) override {
return u64(MemoryRead32(vaddr)) | u64(MemoryRead32(vaddr + 4)) << 32;
}
void MemoryWrite8(u32 vaddr, std::uint8_t value) override {
memory[vaddr] = value;
}
void MemoryWrite16(u32 vaddr, std::uint16_t value) override {
MemoryWrite8(vaddr, static_cast<u8>(value));
MemoryWrite8(vaddr + 1, static_cast<u8>(value >> 8));
}
void MemoryWrite32(u32 vaddr, std::uint32_t value) override {
MemoryWrite16(vaddr, static_cast<u16>(value));
MemoryWrite16(vaddr + 2, static_cast<u16>(value >> 16));
}
void MemoryWrite64(u32 vaddr, std::uint64_t value) override {
MemoryWrite32(vaddr, static_cast<u32>(value));
MemoryWrite32(vaddr + 4, static_cast<u32>(value >> 32));
}
void InterpreterFallback(u32 pc, size_t num_instructions) override {
fmt::print("> InterpreterFallback({:08x}, {}) code = {:08x}\n", pc, num_instructions, *MemoryReadCode(pc));
}
void CallSVC(std::uint32_t swi) override {
fmt::print("> CallSVC({})\n", swi);
}
void ExceptionRaised(u32 pc, Dynarmic::A32::Exception exception) override {
fmt::print("> ExceptionRaised({:08x}, {})", pc, static_cast<size_t>(exception));
}
void AddTicks(std::uint64_t ticks) override {
if (ticks > ticks_left) {
ticks_left = 0;
return;
}
ticks_left -= ticks;
}
std::uint64_t GetTicksRemaining() override {
return ticks_left;
}
};
void ExecuteA32Instruction(u32 instruction) {
ExecEnv env;
A32::Jit cpu{A32::UserConfig{&env}};
env.ticks_left = 1;
std::array<u32, 16> regs{};
std::array<u32, 64> ext_regs{};
u32 cpsr = 0;
u32 fpscr = 0;
const std::map<std::string, u32*> name_map = [&regs, &ext_regs, &cpsr, &fpscr] {
std::map<std::string, u32*> name_map;
for (size_t i = 0; i < regs.size(); i++) {
name_map[fmt::format("r{}", i)] = &regs[i];
}
for (size_t i = 0; i < ext_regs.size(); i++) {
name_map[fmt::format("s{}", i)] = &ext_regs[i];
}
name_map["sp"] = &regs[13];
name_map["lr"] = &regs[14];
name_map["pc"] = &regs[15];
name_map["cpsr"] = &cpsr;
name_map["fpscr"] = &fpscr;
return name_map;
}();
const auto get_line = []() {
std::string line;
std::getline(std::cin, line);
std::transform(line.begin(), line.end(), line.begin(), [](unsigned char c) { return static_cast<char>(std::tolower(c)); });
return line;
};
const auto get_value = [&get_line]() -> std::optional<u32> {
std::string line = get_line();
if (line.length() > 2 && line[0] == '0' && line[1] == 'x')
line = line.substr(2);
if (line.length() > 8)
return std::nullopt;
char* endptr;
const u32 value = strtol(line.c_str(), &endptr, 16);
if (line.c_str() + line.length() != endptr)
return std::nullopt;
return value;
};
while (std::cin) {
fmt::print("register: ");
const std::string reg_name = get_line();
if (const auto iter = name_map.find(reg_name); iter != name_map.end()) {
fmt::print("value: ");
if (const auto value = get_value()) {
*(iter->second) = *value;
fmt::print("> {} = 0x{:08x}\n", reg_name, *value);
}
} else if (reg_name == "mem" || reg_name == "memory") {
fmt::print("address: ");
if (const auto address = get_value()) {
fmt::print("value: ");
if (const auto value = get_value()) {
env.MemoryWrite32(*address, *value);
fmt::print("> mem[0x{:08x}] = 0x{:08x}\n", *address, *value);
}
}
} else if (reg_name == "end") {
break;
}
}
fmt::print("\n\n");
cpu.Regs() = regs;
cpu.ExtRegs() = ext_regs;
cpu.SetCpsr(cpsr);
cpu.SetFpscr(fpscr);
const u32 initial_pc = regs[15];
env.MemoryWrite32(initial_pc + 0, instruction);
env.MemoryWrite32(initial_pc + 4, 0xEAFFFFFE); // B +0
cpu.Run();
fmt::print("Registers modified:\n");
for (size_t i = 0; i < regs.size(); ++i) {
if (regs[i] != cpu.Regs()[i]) {
fmt::print("{:3s}: {:08x}\n", static_cast<A32::Reg>(i), cpu.Regs()[i]);
}
}
for (size_t i = 0; i < ext_regs.size(); ++i) {
if (ext_regs[i] != cpu.ExtRegs()[i]) {
fmt::print("{:3s}: {:08x}\n", static_cast<A32::ExtReg>(i), cpu.Regs()[i]);
}
}
if (cpsr != cpu.Cpsr()) {
fmt::print("cpsr {:08x}\n", cpu.Cpsr());
}
if (fpscr != cpu.Fpscr()) {
fmt::print("fpscr{:08x}\n", cpu.Fpscr());
}
fmt::print("Modified memory:\n");
for (auto iter = env.memory.begin(); iter != env.memory.end(); ++iter) {
fmt::print("{:08x} {:02x}\n", iter->first, iter->second);
}
}
int main(int argc, char** argv) {
if (argc < 3 || argc > 4) {
fmt::print("usage: {} <a32/a64/thumb> <instruction_in_hex> [-exec]\n", argv[0]);
return 1;
}
const char* const hex_instruction = [argv] {
if (strlen(argv[2]) > 2 && argv[2][0] == '0' && argv[2][1] == 'x') {
return argv[2] + 2;
}
return argv[2];
}();
if (strlen(hex_instruction) > 8) {
fmt::print("hex string too long\n");
return 1;
}
const u32 instruction = strtol(hex_instruction, nullptr, 16);
if (strcmp(argv[1], "a32") == 0) {
PrintA32Instruction(instruction);
} else if (strcmp(argv[1], "a64") == 0) {
PrintA64Instruction(instruction);
} else if (strcmp(argv[1], "t32") == 0 || strcmp(argv[1], "t16") == 0 || strcmp(argv[1], "thumb") == 0) {
PrintThumbInstruction(instruction);
} else {
fmt::print("Invalid mode: {}\nValid values: a32, a64, thumb\n", argv[1]);
return 1;
}
if (argc == 4) {
if (strcmp(argv[3], "-exec") != 0) {
fmt::print("Invalid option {}\n", argv[3]);
return 1;
}
if (strcmp(argv[1], "a32") == 0) {
ExecuteA32Instruction(instruction);
} else {
fmt::print("Executing in this mode not currently supported\n");
return 1;
}
}
return 0;
}