mirror of
				https://git.eden-emu.dev/eden-emu/eden.git
				synced 2025-10-25 19:03:17 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			9285 lines
		
	
	
	
		
			393 KiB
		
	
	
	
		
			C++
		
	
	
		
			Executable file
		
	
	
	
	
			
		
		
	
	
			9285 lines
		
	
	
	
		
			393 KiB
		
	
	
	
		
			C++
		
	
	
		
			Executable file
		
	
	
	
	
| // SPDX-FileCopyrightText: Copyright 2015-2024 SSE2NEON Contributors
 | |
| // SPDX-License-Identifier: MIT
 | |
| 
 | |
| #ifndef SSE2NEON_H
 | |
| #define SSE2NEON_H
 | |
| 
 | |
| /*
 | |
|  * sse2neon is freely redistributable under the MIT License.
 | |
|  *
 | |
|  * Copyright (c) 2015-2024 SSE2NEON Contributors.
 | |
|  *
 | |
|  * Permission is hereby granted, free of charge, to any person obtaining a copy
 | |
|  * of this software and associated documentation files (the "Software"), to deal
 | |
|  * in the Software without restriction, including without limitation the rights
 | |
|  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 | |
|  * copies of the Software, and to permit persons to whom the Software is
 | |
|  * furnished to do so, subject to the following conditions:
 | |
|  *
 | |
|  * The above copyright notice and this permission notice shall be included in
 | |
|  * all copies or substantial portions of the Software.
 | |
|  *
 | |
|  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 | |
|  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 | |
|  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 | |
|  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 | |
|  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 | |
|  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 | |
|  * SOFTWARE.
 | |
|  */
 | |
| 
 | |
| // This header file provides a simple API translation layer
 | |
| // between SSE intrinsics to their corresponding Arm/Aarch64 NEON versions
 | |
| //
 | |
| // Contributors to this work are:
 | |
| //   John W. Ratcliff <jratcliffscarab@gmail.com>
 | |
| //   Brandon Rowlett <browlett@nvidia.com>
 | |
| //   Ken Fast <kfast@gdeb.com>
 | |
| //   Eric van Beurden <evanbeurden@nvidia.com>
 | |
| //   Alexander Potylitsin <apotylitsin@nvidia.com>
 | |
| //   Hasindu Gamaarachchi <hasindu2008@gmail.com>
 | |
| //   Jim Huang <jserv@ccns.ncku.edu.tw>
 | |
| //   Mark Cheng <marktwtn@gmail.com>
 | |
| //   Malcolm James MacLeod <malcolm@gulden.com>
 | |
| //   Devin Hussey (easyaspi314) <husseydevin@gmail.com>
 | |
| //   Sebastian Pop <spop@amazon.com>
 | |
| //   Developer Ecosystem Engineering <DeveloperEcosystemEngineering@apple.com>
 | |
| //   Danila Kutenin <danilak@google.com>
 | |
| //   François Turban (JishinMaster) <francois.turban@gmail.com>
 | |
| //   Pei-Hsuan Hung <afcidk@gmail.com>
 | |
| //   Yang-Hao Yuan <yuanyanghau@gmail.com>
 | |
| //   Syoyo Fujita <syoyo@lighttransport.com>
 | |
| //   Brecht Van Lommel <brecht@blender.org>
 | |
| //   Jonathan Hue <jhue@adobe.com>
 | |
| //   Cuda Chen <clh960524@gmail.com>
 | |
| //   Aymen Qader <aymen.qader@arm.com>
 | |
| //   Anthony Roberts <anthony.roberts@linaro.org>
 | |
| 
 | |
| /* Tunable configurations */
 | |
| 
 | |
| /* Enable precise implementation of math operations
 | |
|  * This would slow down the computation a bit, but gives consistent result with
 | |
|  * x86 SSE. (e.g. would solve a hole or NaN pixel in the rendering result)
 | |
|  */
 | |
| /* _mm_min|max_ps|ss|pd|sd */
 | |
| #ifndef SSE2NEON_PRECISE_MINMAX
 | |
| #define SSE2NEON_PRECISE_MINMAX (0)
 | |
| #endif
 | |
| /* _mm_rcp_ps and _mm_div_ps */
 | |
| #ifndef SSE2NEON_PRECISE_DIV
 | |
| #define SSE2NEON_PRECISE_DIV (0)
 | |
| #endif
 | |
| /* _mm_sqrt_ps and _mm_rsqrt_ps */
 | |
| #ifndef SSE2NEON_PRECISE_SQRT
 | |
| #define SSE2NEON_PRECISE_SQRT (0)
 | |
| #endif
 | |
| /* _mm_dp_pd */
 | |
| #ifndef SSE2NEON_PRECISE_DP
 | |
| #define SSE2NEON_PRECISE_DP (0)
 | |
| #endif
 | |
| 
 | |
| /* Enable inclusion of windows.h on MSVC platforms
 | |
|  * This makes _mm_clflush functional on windows, as there is no builtin.
 | |
|  */
 | |
| #ifndef SSE2NEON_INCLUDE_WINDOWS_H
 | |
| #define SSE2NEON_INCLUDE_WINDOWS_H (0)
 | |
| #endif
 | |
| 
 | |
| /* compiler specific definitions */
 | |
| #if defined(__GNUC__) || defined(__clang__)
 | |
| #pragma push_macro("FORCE_INLINE")
 | |
| #pragma push_macro("ALIGN_STRUCT")
 | |
| #define FORCE_INLINE static inline __attribute__((always_inline))
 | |
| #define ALIGN_STRUCT(x) __attribute__((aligned(x)))
 | |
| #define _sse2neon_likely(x) __builtin_expect(!!(x), 1)
 | |
| #define _sse2neon_unlikely(x) __builtin_expect(!!(x), 0)
 | |
| #elif defined(_MSC_VER)
 | |
| #if _MSVC_TRADITIONAL
 | |
| #error Using the traditional MSVC preprocessor is not supported! Use /Zc:preprocessor instead.
 | |
| #endif
 | |
| #ifndef FORCE_INLINE
 | |
| #define FORCE_INLINE static inline
 | |
| #endif
 | |
| #ifndef ALIGN_STRUCT
 | |
| #define ALIGN_STRUCT(x) __declspec(align(x))
 | |
| #endif
 | |
| #define _sse2neon_likely(x) (x)
 | |
| #define _sse2neon_unlikely(x) (x)
 | |
| #else
 | |
| #pragma message("Macro name collisions may happen with unsupported compilers.")
 | |
| #endif
 | |
| 
 | |
| #if !defined(__clang__) && defined(__GNUC__) && __GNUC__ < 10
 | |
| #warning "GCC versions earlier than 10 are not supported."
 | |
| #endif
 | |
| 
 | |
| /* C language does not allow initializing a variable with a function call. */
 | |
| #ifdef __cplusplus
 | |
| #define _sse2neon_const static const
 | |
| #else
 | |
| #define _sse2neon_const const
 | |
| #endif
 | |
| 
 | |
| #include <stdint.h>
 | |
| #include <stdlib.h>
 | |
| 
 | |
| #if defined(_WIN32)
 | |
| /* Definitions for _mm_{malloc,free} are provided by <malloc.h>
 | |
|  * from both MinGW-w64 and MSVC.
 | |
|  */
 | |
| #define SSE2NEON_ALLOC_DEFINED
 | |
| #endif
 | |
| 
 | |
| /* If using MSVC */
 | |
| #ifdef _MSC_VER
 | |
| #include <intrin.h>
 | |
| #if SSE2NEON_INCLUDE_WINDOWS_H
 | |
| #include <processthreadsapi.h>
 | |
| #include <windows.h>
 | |
| #endif
 | |
| 
 | |
| #if !defined(__cplusplus)
 | |
| #error SSE2NEON only supports C++ compilation with this compiler
 | |
| #endif
 | |
| 
 | |
| #ifdef SSE2NEON_ALLOC_DEFINED
 | |
| #include <malloc.h>
 | |
| #endif
 | |
| 
 | |
| #if (defined(_M_AMD64) || defined(__x86_64__)) || \
 | |
|     (defined(_M_ARM64) || defined(__arm64__))
 | |
| #define SSE2NEON_HAS_BITSCAN64
 | |
| #endif
 | |
| #endif
 | |
| 
 | |
| #if defined(__GNUC__) || defined(__clang__)
 | |
| #define _sse2neon_define0(type, s, body) \
 | |
|     __extension__({                      \
 | |
|         type _a = (s);                   \
 | |
|         body                             \
 | |
|     })
 | |
| #define _sse2neon_define1(type, s, body) \
 | |
|     __extension__({                      \
 | |
|         type _a = (s);                   \
 | |
|         body                             \
 | |
|     })
 | |
| #define _sse2neon_define2(type, a, b, body) \
 | |
|     __extension__({                         \
 | |
|         type _a = (a), _b = (b);            \
 | |
|         body                                \
 | |
|     })
 | |
| #define _sse2neon_return(ret) (ret)
 | |
| #else
 | |
| #define _sse2neon_define0(type, a, body) [=](type _a) { body }(a)
 | |
| #define _sse2neon_define1(type, a, body) [](type _a) { body }(a)
 | |
| #define _sse2neon_define2(type, a, b, body) \
 | |
|     [](type _a, type _b) { body }((a), (b))
 | |
| #define _sse2neon_return(ret) return ret
 | |
| #endif
 | |
| 
 | |
| #define _sse2neon_init(...) \
 | |
|     {                       \
 | |
|         __VA_ARGS__         \
 | |
|     }
 | |
| 
 | |
| /* Compiler barrier */
 | |
| #if defined(_MSC_VER)
 | |
| #define SSE2NEON_BARRIER() _ReadWriteBarrier()
 | |
| #else
 | |
| #define SSE2NEON_BARRIER()                     \
 | |
|     do {                                       \
 | |
|         __asm__ __volatile__("" ::: "memory"); \
 | |
|         (void) 0;                              \
 | |
|     } while (0)
 | |
| #endif
 | |
| 
 | |
| /* Memory barriers
 | |
|  * __atomic_thread_fence does not include a compiler barrier; instead,
 | |
|  * the barrier is part of __atomic_load/__atomic_store's "volatile-like"
 | |
|  * semantics.
 | |
|  */
 | |
| #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201112L)
 | |
| #include <stdatomic.h>
 | |
| #endif
 | |
| 
 | |
| FORCE_INLINE void _sse2neon_smp_mb(void)
 | |
| {
 | |
|     SSE2NEON_BARRIER();
 | |
| #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201112L) && \
 | |
|     !defined(__STDC_NO_ATOMICS__)
 | |
|     atomic_thread_fence(memory_order_seq_cst);
 | |
| #elif defined(__GNUC__) || defined(__clang__)
 | |
|     __atomic_thread_fence(__ATOMIC_SEQ_CST);
 | |
| #else /* MSVC */
 | |
|     __dmb(_ARM64_BARRIER_ISH);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /* Architecture-specific build options */
 | |
| /* FIXME: #pragma GCC push_options is only available on GCC */
 | |
| #if defined(__GNUC__)
 | |
| #if defined(__arm__) && __ARM_ARCH == 7
 | |
| /* According to ARM C Language Extensions Architecture specification,
 | |
|  * __ARM_NEON is defined to a value indicating the Advanced SIMD (NEON)
 | |
|  * architecture supported.
 | |
|  */
 | |
| #if !defined(__ARM_NEON) || !defined(__ARM_NEON__)
 | |
| #error "You must enable NEON instructions (e.g. -mfpu=neon) to use SSE2NEON."
 | |
| #endif
 | |
| #if !defined(__clang__)
 | |
| #pragma GCC push_options
 | |
| #pragma GCC target("fpu=neon")
 | |
| #endif
 | |
| #elif defined(__aarch64__) || defined(_M_ARM64)
 | |
| #if !defined(__clang__) && !defined(_MSC_VER)
 | |
| #pragma GCC push_options
 | |
| #pragma GCC target("+simd")
 | |
| #endif
 | |
| #elif __ARM_ARCH == 8
 | |
| #if !defined(__ARM_NEON) || !defined(__ARM_NEON__)
 | |
| #error \
 | |
|     "You must enable NEON instructions (e.g. -mfpu=neon-fp-armv8) to use SSE2NEON."
 | |
| #endif
 | |
| #if !defined(__clang__) && !defined(_MSC_VER)
 | |
| #pragma GCC push_options
 | |
| #endif
 | |
| #else
 | |
| #error "Unsupported target. Must be either ARMv7-A+NEON or ARMv8-A."
 | |
| #endif
 | |
| #endif
 | |
| 
 | |
| #include <arm_neon.h>
 | |
| #if (!defined(__aarch64__) && !defined(_M_ARM64)) && (__ARM_ARCH == 8)
 | |
| #if defined __has_include && __has_include(<arm_acle.h>)
 | |
| #include <arm_acle.h>
 | |
| #endif
 | |
| #endif
 | |
| 
 | |
| /* Apple Silicon cache lines are double of what is commonly used by Intel, AMD
 | |
|  * and other Arm microarchitectures use.
 | |
|  * From sysctl -a on Apple M1:
 | |
|  * hw.cachelinesize: 128
 | |
|  */
 | |
| #if defined(__APPLE__) && (defined(__aarch64__) || defined(__arm64__))
 | |
| #define SSE2NEON_CACHELINE_SIZE 128
 | |
| #else
 | |
| #define SSE2NEON_CACHELINE_SIZE 64
 | |
| #endif
 | |
| 
 | |
| /* Rounding functions require either Aarch64 instructions or libm fallback */
 | |
| #if !defined(__aarch64__) && !defined(_M_ARM64)
 | |
| #include <math.h>
 | |
| #endif
 | |
| 
 | |
| /* On ARMv7, some registers, such as PMUSERENR and PMCCNTR, are read-only
 | |
|  * or even not accessible in user mode.
 | |
|  * To write or access to these registers in user mode,
 | |
|  * we have to perform syscall instead.
 | |
|  */
 | |
| #if (!defined(__aarch64__) && !defined(_M_ARM64))
 | |
| #include <sys/time.h>
 | |
| #endif
 | |
| 
 | |
| /* "__has_builtin" can be used to query support for built-in functions
 | |
|  * provided by gcc/clang and other compilers that support it.
 | |
|  */
 | |
| #ifndef __has_builtin /* GCC prior to 10 or non-clang compilers */
 | |
| /* Compatibility with gcc <= 9 */
 | |
| #if defined(__GNUC__) && (__GNUC__ <= 9)
 | |
| #define __has_builtin(x) HAS##x
 | |
| #define HAS__builtin_popcount 1
 | |
| #define HAS__builtin_popcountll 1
 | |
| 
 | |
| // __builtin_shuffle introduced in GCC 4.7.0
 | |
| #if (__GNUC__ >= 5) || ((__GNUC__ == 4) && (__GNUC_MINOR__ >= 7))
 | |
| #define HAS__builtin_shuffle 1
 | |
| #else
 | |
| #define HAS__builtin_shuffle 0
 | |
| #endif
 | |
| 
 | |
| #define HAS__builtin_shufflevector 0
 | |
| #define HAS__builtin_nontemporal_store 0
 | |
| #else
 | |
| #define __has_builtin(x) 0
 | |
| #endif
 | |
| #endif
 | |
| 
 | |
| /**
 | |
|  * MACRO for shuffle parameter for _mm_shuffle_ps().
 | |
|  * Argument fp3 is a digit[0123] that represents the fp from argument "b"
 | |
|  * of mm_shuffle_ps that will be placed in fp3 of result. fp2 is the same
 | |
|  * for fp2 in result. fp1 is a digit[0123] that represents the fp from
 | |
|  * argument "a" of mm_shuffle_ps that will be places in fp1 of result.
 | |
|  * fp0 is the same for fp0 of result.
 | |
|  */
 | |
| #define _MM_SHUFFLE(fp3, fp2, fp1, fp0) \
 | |
|     (((fp3) << 6) | ((fp2) << 4) | ((fp1) << 2) | ((fp0)))
 | |
| 
 | |
| #if __has_builtin(__builtin_shufflevector)
 | |
| #define _sse2neon_shuffle(type, a, b, ...) \
 | |
|     __builtin_shufflevector(a, b, __VA_ARGS__)
 | |
| #elif __has_builtin(__builtin_shuffle)
 | |
| #define _sse2neon_shuffle(type, a, b, ...) \
 | |
|     __extension__({                        \
 | |
|         type tmp = {__VA_ARGS__};          \
 | |
|         __builtin_shuffle(a, b, tmp);      \
 | |
|     })
 | |
| #endif
 | |
| 
 | |
| #ifdef _sse2neon_shuffle
 | |
| #define vshuffle_s16(a, b, ...) _sse2neon_shuffle(int16x4_t, a, b, __VA_ARGS__)
 | |
| #define vshuffleq_s16(a, b, ...) _sse2neon_shuffle(int16x8_t, a, b, __VA_ARGS__)
 | |
| #define vshuffle_s32(a, b, ...) _sse2neon_shuffle(int32x2_t, a, b, __VA_ARGS__)
 | |
| #define vshuffleq_s32(a, b, ...) _sse2neon_shuffle(int32x4_t, a, b, __VA_ARGS__)
 | |
| #define vshuffle_s64(a, b, ...) _sse2neon_shuffle(int64x1_t, a, b, __VA_ARGS__)
 | |
| #define vshuffleq_s64(a, b, ...) _sse2neon_shuffle(int64x2_t, a, b, __VA_ARGS__)
 | |
| #endif
 | |
| 
 | |
| /* Rounding mode macros. */
 | |
| #define _MM_FROUND_TO_NEAREST_INT 0x00
 | |
| #define _MM_FROUND_TO_NEG_INF 0x01
 | |
| #define _MM_FROUND_TO_POS_INF 0x02
 | |
| #define _MM_FROUND_TO_ZERO 0x03
 | |
| #define _MM_FROUND_CUR_DIRECTION 0x04
 | |
| #define _MM_FROUND_NO_EXC 0x08
 | |
| #define _MM_FROUND_RAISE_EXC 0x00
 | |
| #define _MM_FROUND_NINT (_MM_FROUND_TO_NEAREST_INT | _MM_FROUND_RAISE_EXC)
 | |
| #define _MM_FROUND_FLOOR (_MM_FROUND_TO_NEG_INF | _MM_FROUND_RAISE_EXC)
 | |
| #define _MM_FROUND_CEIL (_MM_FROUND_TO_POS_INF | _MM_FROUND_RAISE_EXC)
 | |
| #define _MM_FROUND_TRUNC (_MM_FROUND_TO_ZERO | _MM_FROUND_RAISE_EXC)
 | |
| #define _MM_FROUND_RINT (_MM_FROUND_CUR_DIRECTION | _MM_FROUND_RAISE_EXC)
 | |
| #define _MM_FROUND_NEARBYINT (_MM_FROUND_CUR_DIRECTION | _MM_FROUND_NO_EXC)
 | |
| #define _MM_ROUND_NEAREST 0x0000
 | |
| #define _MM_ROUND_DOWN 0x2000
 | |
| #define _MM_ROUND_UP 0x4000
 | |
| #define _MM_ROUND_TOWARD_ZERO 0x6000
 | |
| /* Flush zero mode macros. */
 | |
| #define _MM_FLUSH_ZERO_MASK 0x8000
 | |
| #define _MM_FLUSH_ZERO_ON 0x8000
 | |
| #define _MM_FLUSH_ZERO_OFF 0x0000
 | |
| /* Denormals are zeros mode macros. */
 | |
| #define _MM_DENORMALS_ZERO_MASK 0x0040
 | |
| #define _MM_DENORMALS_ZERO_ON 0x0040
 | |
| #define _MM_DENORMALS_ZERO_OFF 0x0000
 | |
| 
 | |
| /* indicate immediate constant argument in a given range */
 | |
| #define __constrange(a, b) const
 | |
| 
 | |
| /* A few intrinsics accept traditional data types like ints or floats, but
 | |
|  * most operate on data types that are specific to SSE.
 | |
|  * If a vector type ends in d, it contains doubles, and if it does not have
 | |
|  * a suffix, it contains floats. An integer vector type can contain any type
 | |
|  * of integer, from chars to shorts to unsigned long longs.
 | |
|  */
 | |
| typedef int64x1_t __m64;
 | |
| typedef float32x4_t __m128; /* 128-bit vector containing 4 floats */
 | |
| // On ARM 32-bit architecture, the float64x2_t is not supported.
 | |
| // The data type __m128d should be represented in a different way for related
 | |
| // intrinsic conversion.
 | |
| #if defined(__aarch64__) || defined(_M_ARM64)
 | |
| typedef float64x2_t __m128d; /* 128-bit vector containing 2 doubles */
 | |
| #else
 | |
| typedef float32x4_t __m128d;
 | |
| #endif
 | |
| typedef int64x2_t __m128i; /* 128-bit vector containing integers */
 | |
| 
 | |
| // __int64 is defined in the Intrinsics Guide which maps to different datatype
 | |
| // in different data model
 | |
| #if !(defined(_WIN32) || defined(_WIN64) || defined(__int64))
 | |
| #if (defined(__x86_64__) || defined(__i386__))
 | |
| #define __int64 long long
 | |
| #else
 | |
| #define __int64 int64_t
 | |
| #endif
 | |
| #endif
 | |
| 
 | |
| /* type-safe casting between types */
 | |
| 
 | |
| #define vreinterpretq_m128_f16(x) vreinterpretq_f32_f16(x)
 | |
| #define vreinterpretq_m128_f32(x) (x)
 | |
| #define vreinterpretq_m128_f64(x) vreinterpretq_f32_f64(x)
 | |
| 
 | |
| #define vreinterpretq_m128_u8(x) vreinterpretq_f32_u8(x)
 | |
| #define vreinterpretq_m128_u16(x) vreinterpretq_f32_u16(x)
 | |
| #define vreinterpretq_m128_u32(x) vreinterpretq_f32_u32(x)
 | |
| #define vreinterpretq_m128_u64(x) vreinterpretq_f32_u64(x)
 | |
| 
 | |
| #define vreinterpretq_m128_s8(x) vreinterpretq_f32_s8(x)
 | |
| #define vreinterpretq_m128_s16(x) vreinterpretq_f32_s16(x)
 | |
| #define vreinterpretq_m128_s32(x) vreinterpretq_f32_s32(x)
 | |
| #define vreinterpretq_m128_s64(x) vreinterpretq_f32_s64(x)
 | |
| 
 | |
| #define vreinterpretq_f16_m128(x) vreinterpretq_f16_f32(x)
 | |
| #define vreinterpretq_f32_m128(x) (x)
 | |
| #define vreinterpretq_f64_m128(x) vreinterpretq_f64_f32(x)
 | |
| 
 | |
| #define vreinterpretq_u8_m128(x) vreinterpretq_u8_f32(x)
 | |
| #define vreinterpretq_u16_m128(x) vreinterpretq_u16_f32(x)
 | |
| #define vreinterpretq_u32_m128(x) vreinterpretq_u32_f32(x)
 | |
| #define vreinterpretq_u64_m128(x) vreinterpretq_u64_f32(x)
 | |
| 
 | |
| #define vreinterpretq_s8_m128(x) vreinterpretq_s8_f32(x)
 | |
| #define vreinterpretq_s16_m128(x) vreinterpretq_s16_f32(x)
 | |
| #define vreinterpretq_s32_m128(x) vreinterpretq_s32_f32(x)
 | |
| #define vreinterpretq_s64_m128(x) vreinterpretq_s64_f32(x)
 | |
| 
 | |
| #define vreinterpretq_m128i_s8(x) vreinterpretq_s64_s8(x)
 | |
| #define vreinterpretq_m128i_s16(x) vreinterpretq_s64_s16(x)
 | |
| #define vreinterpretq_m128i_s32(x) vreinterpretq_s64_s32(x)
 | |
| #define vreinterpretq_m128i_s64(x) (x)
 | |
| 
 | |
| #define vreinterpretq_m128i_u8(x) vreinterpretq_s64_u8(x)
 | |
| #define vreinterpretq_m128i_u16(x) vreinterpretq_s64_u16(x)
 | |
| #define vreinterpretq_m128i_u32(x) vreinterpretq_s64_u32(x)
 | |
| #define vreinterpretq_m128i_u64(x) vreinterpretq_s64_u64(x)
 | |
| 
 | |
| #define vreinterpretq_f32_m128i(x) vreinterpretq_f32_s64(x)
 | |
| #define vreinterpretq_f64_m128i(x) vreinterpretq_f64_s64(x)
 | |
| 
 | |
| #define vreinterpretq_s8_m128i(x) vreinterpretq_s8_s64(x)
 | |
| #define vreinterpretq_s16_m128i(x) vreinterpretq_s16_s64(x)
 | |
| #define vreinterpretq_s32_m128i(x) vreinterpretq_s32_s64(x)
 | |
| #define vreinterpretq_s64_m128i(x) (x)
 | |
| 
 | |
| #define vreinterpretq_u8_m128i(x) vreinterpretq_u8_s64(x)
 | |
| #define vreinterpretq_u16_m128i(x) vreinterpretq_u16_s64(x)
 | |
| #define vreinterpretq_u32_m128i(x) vreinterpretq_u32_s64(x)
 | |
| #define vreinterpretq_u64_m128i(x) vreinterpretq_u64_s64(x)
 | |
| 
 | |
| #define vreinterpret_m64_s8(x) vreinterpret_s64_s8(x)
 | |
| #define vreinterpret_m64_s16(x) vreinterpret_s64_s16(x)
 | |
| #define vreinterpret_m64_s32(x) vreinterpret_s64_s32(x)
 | |
| #define vreinterpret_m64_s64(x) (x)
 | |
| 
 | |
| #define vreinterpret_m64_u8(x) vreinterpret_s64_u8(x)
 | |
| #define vreinterpret_m64_u16(x) vreinterpret_s64_u16(x)
 | |
| #define vreinterpret_m64_u32(x) vreinterpret_s64_u32(x)
 | |
| #define vreinterpret_m64_u64(x) vreinterpret_s64_u64(x)
 | |
| 
 | |
| #define vreinterpret_m64_f16(x) vreinterpret_s64_f16(x)
 | |
| #define vreinterpret_m64_f32(x) vreinterpret_s64_f32(x)
 | |
| #define vreinterpret_m64_f64(x) vreinterpret_s64_f64(x)
 | |
| 
 | |
| #define vreinterpret_u8_m64(x) vreinterpret_u8_s64(x)
 | |
| #define vreinterpret_u16_m64(x) vreinterpret_u16_s64(x)
 | |
| #define vreinterpret_u32_m64(x) vreinterpret_u32_s64(x)
 | |
| #define vreinterpret_u64_m64(x) vreinterpret_u64_s64(x)
 | |
| 
 | |
| #define vreinterpret_s8_m64(x) vreinterpret_s8_s64(x)
 | |
| #define vreinterpret_s16_m64(x) vreinterpret_s16_s64(x)
 | |
| #define vreinterpret_s32_m64(x) vreinterpret_s32_s64(x)
 | |
| #define vreinterpret_s64_m64(x) (x)
 | |
| 
 | |
| #define vreinterpret_f32_m64(x) vreinterpret_f32_s64(x)
 | |
| 
 | |
| #if defined(__aarch64__) || defined(_M_ARM64)
 | |
| #define vreinterpretq_m128d_s32(x) vreinterpretq_f64_s32(x)
 | |
| #define vreinterpretq_m128d_s64(x) vreinterpretq_f64_s64(x)
 | |
| 
 | |
| #define vreinterpretq_m128d_u64(x) vreinterpretq_f64_u64(x)
 | |
| 
 | |
| #define vreinterpretq_m128d_f32(x) vreinterpretq_f64_f32(x)
 | |
| #define vreinterpretq_m128d_f64(x) (x)
 | |
| 
 | |
| #define vreinterpretq_s64_m128d(x) vreinterpretq_s64_f64(x)
 | |
| 
 | |
| #define vreinterpretq_u32_m128d(x) vreinterpretq_u32_f64(x)
 | |
| #define vreinterpretq_u64_m128d(x) vreinterpretq_u64_f64(x)
 | |
| 
 | |
| #define vreinterpretq_f64_m128d(x) (x)
 | |
| #define vreinterpretq_f32_m128d(x) vreinterpretq_f32_f64(x)
 | |
| #else
 | |
| #define vreinterpretq_m128d_s32(x) vreinterpretq_f32_s32(x)
 | |
| #define vreinterpretq_m128d_s64(x) vreinterpretq_f32_s64(x)
 | |
| 
 | |
| #define vreinterpretq_m128d_u32(x) vreinterpretq_f32_u32(x)
 | |
| #define vreinterpretq_m128d_u64(x) vreinterpretq_f32_u64(x)
 | |
| 
 | |
| #define vreinterpretq_m128d_f32(x) (x)
 | |
| 
 | |
| #define vreinterpretq_s64_m128d(x) vreinterpretq_s64_f32(x)
 | |
| 
 | |
| #define vreinterpretq_u32_m128d(x) vreinterpretq_u32_f32(x)
 | |
| #define vreinterpretq_u64_m128d(x) vreinterpretq_u64_f32(x)
 | |
| 
 | |
| #define vreinterpretq_f32_m128d(x) (x)
 | |
| #endif
 | |
| 
 | |
| // A struct is defined in this header file called 'SIMDVec' which can be used
 | |
| // by applications which attempt to access the contents of an __m128 struct
 | |
| // directly.  It is important to note that accessing the __m128 struct directly
 | |
| // is bad coding practice by Microsoft: @see:
 | |
| // https://learn.microsoft.com/en-us/cpp/cpp/m128
 | |
| //
 | |
| // However, some legacy source code may try to access the contents of an __m128
 | |
| // struct directly so the developer can use the SIMDVec as an alias for it.  Any
 | |
| // casting must be done manually by the developer, as you cannot cast or
 | |
| // otherwise alias the base NEON data type for intrinsic operations.
 | |
| //
 | |
| // union intended to allow direct access to an __m128 variable using the names
 | |
| // that the MSVC compiler provides.  This union should really only be used when
 | |
| // trying to access the members of the vector as integer values.  GCC/clang
 | |
| // allow native access to the float members through a simple array access
 | |
| // operator (in C since 4.6, in C++ since 4.8).
 | |
| //
 | |
| // Ideally direct accesses to SIMD vectors should not be used since it can cause
 | |
| // a performance hit.  If it really is needed however, the original __m128
 | |
| // variable can be aliased with a pointer to this union and used to access
 | |
| // individual components.  The use of this union should be hidden behind a macro
 | |
| // that is used throughout the codebase to access the members instead of always
 | |
| // declaring this type of variable.
 | |
| typedef union ALIGN_STRUCT(16) SIMDVec {
 | |
|     float m128_f32[4];     // as floats - DON'T USE. Added for convenience.
 | |
|     int8_t m128_i8[16];    // as signed 8-bit integers.
 | |
|     int16_t m128_i16[8];   // as signed 16-bit integers.
 | |
|     int32_t m128_i32[4];   // as signed 32-bit integers.
 | |
|     int64_t m128_i64[2];   // as signed 64-bit integers.
 | |
|     uint8_t m128_u8[16];   // as unsigned 8-bit integers.
 | |
|     uint16_t m128_u16[8];  // as unsigned 16-bit integers.
 | |
|     uint32_t m128_u32[4];  // as unsigned 32-bit integers.
 | |
|     uint64_t m128_u64[2];  // as unsigned 64-bit integers.
 | |
| } SIMDVec;
 | |
| 
 | |
| // casting using SIMDVec
 | |
| #define vreinterpretq_nth_u64_m128i(x, n) (((SIMDVec *) &x)->m128_u64[n])
 | |
| #define vreinterpretq_nth_u32_m128i(x, n) (((SIMDVec *) &x)->m128_u32[n])
 | |
| #define vreinterpretq_nth_u8_m128i(x, n) (((SIMDVec *) &x)->m128_u8[n])
 | |
| 
 | |
| /* SSE macros */
 | |
| #define _MM_GET_FLUSH_ZERO_MODE _sse2neon_mm_get_flush_zero_mode
 | |
| #define _MM_SET_FLUSH_ZERO_MODE _sse2neon_mm_set_flush_zero_mode
 | |
| #define _MM_GET_DENORMALS_ZERO_MODE _sse2neon_mm_get_denormals_zero_mode
 | |
| #define _MM_SET_DENORMALS_ZERO_MODE _sse2neon_mm_set_denormals_zero_mode
 | |
| 
 | |
| // Function declaration
 | |
| // SSE
 | |
| FORCE_INLINE unsigned int _MM_GET_ROUNDING_MODE(void);
 | |
| FORCE_INLINE __m128 _mm_move_ss(__m128, __m128);
 | |
| FORCE_INLINE __m128 _mm_or_ps(__m128, __m128);
 | |
| FORCE_INLINE __m128 _mm_set_ps1(float);
 | |
| FORCE_INLINE __m128 _mm_setzero_ps(void);
 | |
| // SSE2
 | |
| FORCE_INLINE __m128i _mm_and_si128(__m128i, __m128i);
 | |
| FORCE_INLINE __m128i _mm_castps_si128(__m128);
 | |
| FORCE_INLINE __m128i _mm_cmpeq_epi32(__m128i, __m128i);
 | |
| FORCE_INLINE __m128i _mm_cvtps_epi32(__m128);
 | |
| FORCE_INLINE __m128d _mm_move_sd(__m128d, __m128d);
 | |
| FORCE_INLINE __m128i _mm_or_si128(__m128i, __m128i);
 | |
| FORCE_INLINE __m128i _mm_set_epi32(int, int, int, int);
 | |
| FORCE_INLINE __m128i _mm_set_epi64x(int64_t, int64_t);
 | |
| FORCE_INLINE __m128d _mm_set_pd(double, double);
 | |
| FORCE_INLINE __m128i _mm_set1_epi32(int);
 | |
| FORCE_INLINE __m128i _mm_setzero_si128(void);
 | |
| // SSE4.1
 | |
| FORCE_INLINE __m128d _mm_ceil_pd(__m128d);
 | |
| FORCE_INLINE __m128 _mm_ceil_ps(__m128);
 | |
| FORCE_INLINE __m128d _mm_floor_pd(__m128d);
 | |
| FORCE_INLINE __m128 _mm_floor_ps(__m128);
 | |
| FORCE_INLINE __m128d _mm_round_pd(__m128d, int);
 | |
| FORCE_INLINE __m128 _mm_round_ps(__m128, int);
 | |
| // SSE4.2
 | |
| FORCE_INLINE uint32_t _mm_crc32_u8(uint32_t, uint8_t);
 | |
| 
 | |
| /* Backwards compatibility for compilers with lack of specific type support */
 | |
| 
 | |
| // Older gcc does not define vld1q_u8_x4 type
 | |
| #if defined(__GNUC__) && !defined(__clang__) &&                        \
 | |
|     ((__GNUC__ <= 13 && defined(__arm__)) ||                           \
 | |
|      (__GNUC__ == 10 && __GNUC_MINOR__ < 3 && defined(__aarch64__)) || \
 | |
|      (__GNUC__ <= 9 && defined(__aarch64__)))
 | |
| FORCE_INLINE uint8x16x4_t _sse2neon_vld1q_u8_x4(const uint8_t *p)
 | |
| {
 | |
|     uint8x16x4_t ret;
 | |
|     ret.val[0] = vld1q_u8(p + 0);
 | |
|     ret.val[1] = vld1q_u8(p + 16);
 | |
|     ret.val[2] = vld1q_u8(p + 32);
 | |
|     ret.val[3] = vld1q_u8(p + 48);
 | |
|     return ret;
 | |
| }
 | |
| #else
 | |
| // Wraps vld1q_u8_x4
 | |
| FORCE_INLINE uint8x16x4_t _sse2neon_vld1q_u8_x4(const uint8_t *p)
 | |
| {
 | |
|     return vld1q_u8_x4(p);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #if !defined(__aarch64__) && !defined(_M_ARM64)
 | |
| /* emulate vaddv u8 variant */
 | |
| FORCE_INLINE uint8_t _sse2neon_vaddv_u8(uint8x8_t v8)
 | |
| {
 | |
|     const uint64x1_t v1 = vpaddl_u32(vpaddl_u16(vpaddl_u8(v8)));
 | |
|     return vget_lane_u8(vreinterpret_u8_u64(v1), 0);
 | |
| }
 | |
| #else
 | |
| // Wraps vaddv_u8
 | |
| FORCE_INLINE uint8_t _sse2neon_vaddv_u8(uint8x8_t v8)
 | |
| {
 | |
|     return vaddv_u8(v8);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #if !defined(__aarch64__) && !defined(_M_ARM64)
 | |
| /* emulate vaddvq u8 variant */
 | |
| FORCE_INLINE uint8_t _sse2neon_vaddvq_u8(uint8x16_t a)
 | |
| {
 | |
|     uint8x8_t tmp = vpadd_u8(vget_low_u8(a), vget_high_u8(a));
 | |
|     uint8_t res = 0;
 | |
|     for (int i = 0; i < 8; ++i)
 | |
|         res += tmp[i];
 | |
|     return res;
 | |
| }
 | |
| #else
 | |
| // Wraps vaddvq_u8
 | |
| FORCE_INLINE uint8_t _sse2neon_vaddvq_u8(uint8x16_t a)
 | |
| {
 | |
|     return vaddvq_u8(a);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #if !defined(__aarch64__) && !defined(_M_ARM64)
 | |
| /* emulate vaddvq u16 variant */
 | |
| FORCE_INLINE uint16_t _sse2neon_vaddvq_u16(uint16x8_t a)
 | |
| {
 | |
|     uint32x4_t m = vpaddlq_u16(a);
 | |
|     uint64x2_t n = vpaddlq_u32(m);
 | |
|     uint64x1_t o = vget_low_u64(n) + vget_high_u64(n);
 | |
| 
 | |
|     return vget_lane_u32((uint32x2_t) o, 0);
 | |
| }
 | |
| #else
 | |
| // Wraps vaddvq_u16
 | |
| FORCE_INLINE uint16_t _sse2neon_vaddvq_u16(uint16x8_t a)
 | |
| {
 | |
|     return vaddvq_u16(a);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* Function Naming Conventions
 | |
|  * The naming convention of SSE intrinsics is straightforward. A generic SSE
 | |
|  * intrinsic function is given as follows:
 | |
|  *   _mm_<name>_<data_type>
 | |
|  *
 | |
|  * The parts of this format are given as follows:
 | |
|  * 1. <name> describes the operation performed by the intrinsic
 | |
|  * 2. <data_type> identifies the data type of the function's primary arguments
 | |
|  *
 | |
|  * This last part, <data_type>, is a little complicated. It identifies the
 | |
|  * content of the input values, and can be set to any of the following values:
 | |
|  * + ps - vectors contain floats (ps stands for packed single-precision)
 | |
|  * + pd - vectors contain doubles (pd stands for packed double-precision)
 | |
|  * + epi8/epi16/epi32/epi64 - vectors contain 8-bit/16-bit/32-bit/64-bit
 | |
|  *                            signed integers
 | |
|  * + epu8/epu16/epu32/epu64 - vectors contain 8-bit/16-bit/32-bit/64-bit
 | |
|  *                            unsigned integers
 | |
|  * + si128 - unspecified 128-bit vector or 256-bit vector
 | |
|  * + m128/m128i/m128d - identifies input vector types when they are different
 | |
|  *                      than the type of the returned vector
 | |
|  *
 | |
|  * For example, _mm_setzero_ps. The _mm implies that the function returns
 | |
|  * a 128-bit vector. The _ps at the end implies that the argument vectors
 | |
|  * contain floats.
 | |
|  *
 | |
|  * A complete example: Byte Shuffle - pshufb (_mm_shuffle_epi8)
 | |
|  *   // Set packed 16-bit integers. 128 bits, 8 short, per 16 bits
 | |
|  *   __m128i v_in = _mm_setr_epi16(1, 2, 3, 4, 5, 6, 7, 8);
 | |
|  *   // Set packed 8-bit integers
 | |
|  *   // 128 bits, 16 chars, per 8 bits
 | |
|  *   __m128i v_perm = _mm_setr_epi8(1, 0,  2,  3, 8, 9, 10, 11,
 | |
|  *                                  4, 5, 12, 13, 6, 7, 14, 15);
 | |
|  *   // Shuffle packed 8-bit integers
 | |
|  *   __m128i v_out = _mm_shuffle_epi8(v_in, v_perm); // pshufb
 | |
|  */
 | |
| 
 | |
| /* Constants for use with _mm_prefetch. */
 | |
| enum _mm_hint {
 | |
|     _MM_HINT_NTA = 0, /* load data to L1 and L2 cache, mark it as NTA */
 | |
|     _MM_HINT_T0 = 1,  /* load data to L1 and L2 cache */
 | |
|     _MM_HINT_T1 = 2,  /* load data to L2 cache only */
 | |
|     _MM_HINT_T2 = 3,  /* load data to L2 cache only, mark it as NTA */
 | |
| };
 | |
| 
 | |
| // The bit field mapping to the FPCR(floating-point control register)
 | |
| typedef struct {
 | |
|     uint16_t res0;
 | |
|     uint8_t res1 : 6;
 | |
|     uint8_t bit22 : 1;
 | |
|     uint8_t bit23 : 1;
 | |
|     uint8_t bit24 : 1;
 | |
|     uint8_t res2 : 7;
 | |
| #if defined(__aarch64__) || defined(_M_ARM64)
 | |
|     uint32_t res3;
 | |
| #endif
 | |
| } fpcr_bitfield;
 | |
| 
 | |
| // Takes the upper 64 bits of a and places it in the low end of the result
 | |
| // Takes the lower 64 bits of b and places it into the high end of the result.
 | |
| FORCE_INLINE __m128 _mm_shuffle_ps_1032(__m128 a, __m128 b)
 | |
| {
 | |
|     float32x2_t a32 = vget_high_f32(vreinterpretq_f32_m128(a));
 | |
|     float32x2_t b10 = vget_low_f32(vreinterpretq_f32_m128(b));
 | |
|     return vreinterpretq_m128_f32(vcombine_f32(a32, b10));
 | |
| }
 | |
| 
 | |
| // takes the lower two 32-bit values from a and swaps them and places in high
 | |
| // end of result takes the higher two 32 bit values from b and swaps them and
 | |
| // places in low end of result.
 | |
| FORCE_INLINE __m128 _mm_shuffle_ps_2301(__m128 a, __m128 b)
 | |
| {
 | |
|     float32x2_t a01 = vrev64_f32(vget_low_f32(vreinterpretq_f32_m128(a)));
 | |
|     float32x2_t b23 = vrev64_f32(vget_high_f32(vreinterpretq_f32_m128(b)));
 | |
|     return vreinterpretq_m128_f32(vcombine_f32(a01, b23));
 | |
| }
 | |
| 
 | |
| FORCE_INLINE __m128 _mm_shuffle_ps_0321(__m128 a, __m128 b)
 | |
| {
 | |
|     float32x2_t a21 = vget_high_f32(
 | |
|         vextq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a), 3));
 | |
|     float32x2_t b03 = vget_low_f32(
 | |
|         vextq_f32(vreinterpretq_f32_m128(b), vreinterpretq_f32_m128(b), 3));
 | |
|     return vreinterpretq_m128_f32(vcombine_f32(a21, b03));
 | |
| }
 | |
| 
 | |
| FORCE_INLINE __m128 _mm_shuffle_ps_2103(__m128 a, __m128 b)
 | |
| {
 | |
|     float32x2_t a03 = vget_low_f32(
 | |
|         vextq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a), 3));
 | |
|     float32x2_t b21 = vget_high_f32(
 | |
|         vextq_f32(vreinterpretq_f32_m128(b), vreinterpretq_f32_m128(b), 3));
 | |
|     return vreinterpretq_m128_f32(vcombine_f32(a03, b21));
 | |
| }
 | |
| 
 | |
| FORCE_INLINE __m128 _mm_shuffle_ps_1010(__m128 a, __m128 b)
 | |
| {
 | |
|     float32x2_t a10 = vget_low_f32(vreinterpretq_f32_m128(a));
 | |
|     float32x2_t b10 = vget_low_f32(vreinterpretq_f32_m128(b));
 | |
|     return vreinterpretq_m128_f32(vcombine_f32(a10, b10));
 | |
| }
 | |
| 
 | |
| FORCE_INLINE __m128 _mm_shuffle_ps_1001(__m128 a, __m128 b)
 | |
| {
 | |
|     float32x2_t a01 = vrev64_f32(vget_low_f32(vreinterpretq_f32_m128(a)));
 | |
|     float32x2_t b10 = vget_low_f32(vreinterpretq_f32_m128(b));
 | |
|     return vreinterpretq_m128_f32(vcombine_f32(a01, b10));
 | |
| }
 | |
| 
 | |
| FORCE_INLINE __m128 _mm_shuffle_ps_0101(__m128 a, __m128 b)
 | |
| {
 | |
|     float32x2_t a01 = vrev64_f32(vget_low_f32(vreinterpretq_f32_m128(a)));
 | |
|     float32x2_t b01 = vrev64_f32(vget_low_f32(vreinterpretq_f32_m128(b)));
 | |
|     return vreinterpretq_m128_f32(vcombine_f32(a01, b01));
 | |
| }
 | |
| 
 | |
| // keeps the low 64 bits of b in the low and puts the high 64 bits of a in the
 | |
| // high
 | |
| FORCE_INLINE __m128 _mm_shuffle_ps_3210(__m128 a, __m128 b)
 | |
| {
 | |
|     float32x2_t a10 = vget_low_f32(vreinterpretq_f32_m128(a));
 | |
|     float32x2_t b32 = vget_high_f32(vreinterpretq_f32_m128(b));
 | |
|     return vreinterpretq_m128_f32(vcombine_f32(a10, b32));
 | |
| }
 | |
| 
 | |
| FORCE_INLINE __m128 _mm_shuffle_ps_0011(__m128 a, __m128 b)
 | |
| {
 | |
|     float32x2_t a11 = vdup_lane_f32(vget_low_f32(vreinterpretq_f32_m128(a)), 1);
 | |
|     float32x2_t b00 = vdup_lane_f32(vget_low_f32(vreinterpretq_f32_m128(b)), 0);
 | |
|     return vreinterpretq_m128_f32(vcombine_f32(a11, b00));
 | |
| }
 | |
| 
 | |
| FORCE_INLINE __m128 _mm_shuffle_ps_0022(__m128 a, __m128 b)
 | |
| {
 | |
|     float32x2_t a22 =
 | |
|         vdup_lane_f32(vget_high_f32(vreinterpretq_f32_m128(a)), 0);
 | |
|     float32x2_t b00 = vdup_lane_f32(vget_low_f32(vreinterpretq_f32_m128(b)), 0);
 | |
|     return vreinterpretq_m128_f32(vcombine_f32(a22, b00));
 | |
| }
 | |
| 
 | |
| FORCE_INLINE __m128 _mm_shuffle_ps_2200(__m128 a, __m128 b)
 | |
| {
 | |
|     float32x2_t a00 = vdup_lane_f32(vget_low_f32(vreinterpretq_f32_m128(a)), 0);
 | |
|     float32x2_t b22 =
 | |
|         vdup_lane_f32(vget_high_f32(vreinterpretq_f32_m128(b)), 0);
 | |
|     return vreinterpretq_m128_f32(vcombine_f32(a00, b22));
 | |
| }
 | |
| 
 | |
| FORCE_INLINE __m128 _mm_shuffle_ps_3202(__m128 a, __m128 b)
 | |
| {
 | |
|     float32_t a0 = vgetq_lane_f32(vreinterpretq_f32_m128(a), 0);
 | |
|     float32x2_t a22 =
 | |
|         vdup_lane_f32(vget_high_f32(vreinterpretq_f32_m128(a)), 0);
 | |
|     float32x2_t a02 = vset_lane_f32(a0, a22, 1); /* TODO: use vzip ?*/
 | |
|     float32x2_t b32 = vget_high_f32(vreinterpretq_f32_m128(b));
 | |
|     return vreinterpretq_m128_f32(vcombine_f32(a02, b32));
 | |
| }
 | |
| 
 | |
| FORCE_INLINE __m128 _mm_shuffle_ps_1133(__m128 a, __m128 b)
 | |
| {
 | |
|     float32x2_t a33 =
 | |
|         vdup_lane_f32(vget_high_f32(vreinterpretq_f32_m128(a)), 1);
 | |
|     float32x2_t b11 = vdup_lane_f32(vget_low_f32(vreinterpretq_f32_m128(b)), 1);
 | |
|     return vreinterpretq_m128_f32(vcombine_f32(a33, b11));
 | |
| }
 | |
| 
 | |
| FORCE_INLINE __m128 _mm_shuffle_ps_2010(__m128 a, __m128 b)
 | |
| {
 | |
|     float32x2_t a10 = vget_low_f32(vreinterpretq_f32_m128(a));
 | |
|     float32_t b2 = vgetq_lane_f32(vreinterpretq_f32_m128(b), 2);
 | |
|     float32x2_t b00 = vdup_lane_f32(vget_low_f32(vreinterpretq_f32_m128(b)), 0);
 | |
|     float32x2_t b20 = vset_lane_f32(b2, b00, 1);
 | |
|     return vreinterpretq_m128_f32(vcombine_f32(a10, b20));
 | |
| }
 | |
| 
 | |
| FORCE_INLINE __m128 _mm_shuffle_ps_2001(__m128 a, __m128 b)
 | |
| {
 | |
|     float32x2_t a01 = vrev64_f32(vget_low_f32(vreinterpretq_f32_m128(a)));
 | |
|     float32_t b2 = vgetq_lane_f32(b, 2);
 | |
|     float32x2_t b00 = vdup_lane_f32(vget_low_f32(vreinterpretq_f32_m128(b)), 0);
 | |
|     float32x2_t b20 = vset_lane_f32(b2, b00, 1);
 | |
|     return vreinterpretq_m128_f32(vcombine_f32(a01, b20));
 | |
| }
 | |
| 
 | |
| FORCE_INLINE __m128 _mm_shuffle_ps_2032(__m128 a, __m128 b)
 | |
| {
 | |
|     float32x2_t a32 = vget_high_f32(vreinterpretq_f32_m128(a));
 | |
|     float32_t b2 = vgetq_lane_f32(b, 2);
 | |
|     float32x2_t b00 = vdup_lane_f32(vget_low_f32(vreinterpretq_f32_m128(b)), 0);
 | |
|     float32x2_t b20 = vset_lane_f32(b2, b00, 1);
 | |
|     return vreinterpretq_m128_f32(vcombine_f32(a32, b20));
 | |
| }
 | |
| 
 | |
| // For MSVC, we check only if it is ARM64, as every single ARM64 processor
 | |
| // supported by WoA has crypto extensions. If this changes in the future,
 | |
| // this can be verified via the runtime-only method of:
 | |
| // IsProcessorFeaturePresent(PF_ARM_V8_CRYPTO_INSTRUCTIONS_AVAILABLE)
 | |
| #if (defined(_M_ARM64) && !defined(__clang__)) || \
 | |
|     (defined(__ARM_FEATURE_CRYPTO) &&             \
 | |
|      (defined(__aarch64__) || __has_builtin(__builtin_arm_crypto_vmullp64)))
 | |
| // Wraps vmull_p64
 | |
| FORCE_INLINE uint64x2_t _sse2neon_vmull_p64(uint64x1_t _a, uint64x1_t _b)
 | |
| {
 | |
|     poly64_t a = vget_lane_p64(vreinterpret_p64_u64(_a), 0);
 | |
|     poly64_t b = vget_lane_p64(vreinterpret_p64_u64(_b), 0);
 | |
| #if defined(_MSC_VER)
 | |
|     __n64 a1 = {a}, b1 = {b};
 | |
|     return vreinterpretq_u64_p128(vmull_p64(a1, b1));
 | |
| #else
 | |
|     return vreinterpretq_u64_p128(vmull_p64(a, b));
 | |
| #endif
 | |
| }
 | |
| #else  // ARMv7 polyfill
 | |
| // ARMv7/some A64 lacks vmull_p64, but it has vmull_p8.
 | |
| //
 | |
| // vmull_p8 calculates 8 8-bit->16-bit polynomial multiplies, but we need a
 | |
| // 64-bit->128-bit polynomial multiply.
 | |
| //
 | |
| // It needs some work and is somewhat slow, but it is still faster than all
 | |
| // known scalar methods.
 | |
| //
 | |
| // Algorithm adapted to C from
 | |
| // https://www.workofard.com/2017/07/ghash-for-low-end-cores/, which is adapted
 | |
| // from "Fast Software Polynomial Multiplication on ARM Processors Using the
 | |
| // NEON Engine" by Danilo Camara, Conrado Gouvea, Julio Lopez and Ricardo Dahab
 | |
| // (https://hal.inria.fr/hal-01506572)
 | |
| static uint64x2_t _sse2neon_vmull_p64(uint64x1_t _a, uint64x1_t _b)
 | |
| {
 | |
|     poly8x8_t a = vreinterpret_p8_u64(_a);
 | |
|     poly8x8_t b = vreinterpret_p8_u64(_b);
 | |
| 
 | |
|     // Masks
 | |
|     uint8x16_t k48_32 = vcombine_u8(vcreate_u8(0x0000ffffffffffff),
 | |
|                                     vcreate_u8(0x00000000ffffffff));
 | |
|     uint8x16_t k16_00 = vcombine_u8(vcreate_u8(0x000000000000ffff),
 | |
|                                     vcreate_u8(0x0000000000000000));
 | |
| 
 | |
|     // Do the multiplies, rotating with vext to get all combinations
 | |
|     uint8x16_t d = vreinterpretq_u8_p16(vmull_p8(a, b));  // D = A0 * B0
 | |
|     uint8x16_t e =
 | |
|         vreinterpretq_u8_p16(vmull_p8(a, vext_p8(b, b, 1)));  // E = A0 * B1
 | |
|     uint8x16_t f =
 | |
|         vreinterpretq_u8_p16(vmull_p8(vext_p8(a, a, 1), b));  // F = A1 * B0
 | |
|     uint8x16_t g =
 | |
|         vreinterpretq_u8_p16(vmull_p8(a, vext_p8(b, b, 2)));  // G = A0 * B2
 | |
|     uint8x16_t h =
 | |
|         vreinterpretq_u8_p16(vmull_p8(vext_p8(a, a, 2), b));  // H = A2 * B0
 | |
|     uint8x16_t i =
 | |
|         vreinterpretq_u8_p16(vmull_p8(a, vext_p8(b, b, 3)));  // I = A0 * B3
 | |
|     uint8x16_t j =
 | |
|         vreinterpretq_u8_p16(vmull_p8(vext_p8(a, a, 3), b));  // J = A3 * B0
 | |
|     uint8x16_t k =
 | |
|         vreinterpretq_u8_p16(vmull_p8(a, vext_p8(b, b, 4)));  // L = A0 * B4
 | |
| 
 | |
|     // Add cross products
 | |
|     uint8x16_t l = veorq_u8(e, f);  // L = E + F
 | |
|     uint8x16_t m = veorq_u8(g, h);  // M = G + H
 | |
|     uint8x16_t n = veorq_u8(i, j);  // N = I + J
 | |
| 
 | |
|     // Interleave. Using vzip1 and vzip2 prevents Clang from emitting TBL
 | |
|     // instructions.
 | |
| #if defined(__aarch64__)
 | |
|     uint8x16_t lm_p0 = vreinterpretq_u8_u64(
 | |
|         vzip1q_u64(vreinterpretq_u64_u8(l), vreinterpretq_u64_u8(m)));
 | |
|     uint8x16_t lm_p1 = vreinterpretq_u8_u64(
 | |
|         vzip2q_u64(vreinterpretq_u64_u8(l), vreinterpretq_u64_u8(m)));
 | |
|     uint8x16_t nk_p0 = vreinterpretq_u8_u64(
 | |
|         vzip1q_u64(vreinterpretq_u64_u8(n), vreinterpretq_u64_u8(k)));
 | |
|     uint8x16_t nk_p1 = vreinterpretq_u8_u64(
 | |
|         vzip2q_u64(vreinterpretq_u64_u8(n), vreinterpretq_u64_u8(k)));
 | |
| #else
 | |
|     uint8x16_t lm_p0 = vcombine_u8(vget_low_u8(l), vget_low_u8(m));
 | |
|     uint8x16_t lm_p1 = vcombine_u8(vget_high_u8(l), vget_high_u8(m));
 | |
|     uint8x16_t nk_p0 = vcombine_u8(vget_low_u8(n), vget_low_u8(k));
 | |
|     uint8x16_t nk_p1 = vcombine_u8(vget_high_u8(n), vget_high_u8(k));
 | |
| #endif
 | |
|     // t0 = (L) (P0 + P1) << 8
 | |
|     // t1 = (M) (P2 + P3) << 16
 | |
|     uint8x16_t t0t1_tmp = veorq_u8(lm_p0, lm_p1);
 | |
|     uint8x16_t t0t1_h = vandq_u8(lm_p1, k48_32);
 | |
|     uint8x16_t t0t1_l = veorq_u8(t0t1_tmp, t0t1_h);
 | |
| 
 | |
|     // t2 = (N) (P4 + P5) << 24
 | |
|     // t3 = (K) (P6 + P7) << 32
 | |
|     uint8x16_t t2t3_tmp = veorq_u8(nk_p0, nk_p1);
 | |
|     uint8x16_t t2t3_h = vandq_u8(nk_p1, k16_00);
 | |
|     uint8x16_t t2t3_l = veorq_u8(t2t3_tmp, t2t3_h);
 | |
| 
 | |
|     // De-interleave
 | |
| #if defined(__aarch64__)
 | |
|     uint8x16_t t0 = vreinterpretq_u8_u64(
 | |
|         vuzp1q_u64(vreinterpretq_u64_u8(t0t1_l), vreinterpretq_u64_u8(t0t1_h)));
 | |
|     uint8x16_t t1 = vreinterpretq_u8_u64(
 | |
|         vuzp2q_u64(vreinterpretq_u64_u8(t0t1_l), vreinterpretq_u64_u8(t0t1_h)));
 | |
|     uint8x16_t t2 = vreinterpretq_u8_u64(
 | |
|         vuzp1q_u64(vreinterpretq_u64_u8(t2t3_l), vreinterpretq_u64_u8(t2t3_h)));
 | |
|     uint8x16_t t3 = vreinterpretq_u8_u64(
 | |
|         vuzp2q_u64(vreinterpretq_u64_u8(t2t3_l), vreinterpretq_u64_u8(t2t3_h)));
 | |
| #else
 | |
|     uint8x16_t t1 = vcombine_u8(vget_high_u8(t0t1_l), vget_high_u8(t0t1_h));
 | |
|     uint8x16_t t0 = vcombine_u8(vget_low_u8(t0t1_l), vget_low_u8(t0t1_h));
 | |
|     uint8x16_t t3 = vcombine_u8(vget_high_u8(t2t3_l), vget_high_u8(t2t3_h));
 | |
|     uint8x16_t t2 = vcombine_u8(vget_low_u8(t2t3_l), vget_low_u8(t2t3_h));
 | |
| #endif
 | |
|     // Shift the cross products
 | |
|     uint8x16_t t0_shift = vextq_u8(t0, t0, 15);  // t0 << 8
 | |
|     uint8x16_t t1_shift = vextq_u8(t1, t1, 14);  // t1 << 16
 | |
|     uint8x16_t t2_shift = vextq_u8(t2, t2, 13);  // t2 << 24
 | |
|     uint8x16_t t3_shift = vextq_u8(t3, t3, 12);  // t3 << 32
 | |
| 
 | |
|     // Accumulate the products
 | |
|     uint8x16_t cross1 = veorq_u8(t0_shift, t1_shift);
 | |
|     uint8x16_t cross2 = veorq_u8(t2_shift, t3_shift);
 | |
|     uint8x16_t mix = veorq_u8(d, cross1);
 | |
|     uint8x16_t r = veorq_u8(mix, cross2);
 | |
|     return vreinterpretq_u64_u8(r);
 | |
| }
 | |
| #endif  // ARMv7 polyfill
 | |
| 
 | |
| // C equivalent:
 | |
| //   __m128i _mm_shuffle_epi32_default(__m128i a,
 | |
| //                                     __constrange(0, 255) int imm) {
 | |
| //       __m128i ret;
 | |
| //       ret[0] = a[imm        & 0x3];   ret[1] = a[(imm >> 2) & 0x3];
 | |
| //       ret[2] = a[(imm >> 4) & 0x03];  ret[3] = a[(imm >> 6) & 0x03];
 | |
| //       return ret;
 | |
| //   }
 | |
| #define _mm_shuffle_epi32_default(a, imm)                                   \
 | |
|     vreinterpretq_m128i_s32(vsetq_lane_s32(                                 \
 | |
|         vgetq_lane_s32(vreinterpretq_s32_m128i(a), ((imm) >> 6) & 0x3),     \
 | |
|         vsetq_lane_s32(                                                     \
 | |
|             vgetq_lane_s32(vreinterpretq_s32_m128i(a), ((imm) >> 4) & 0x3), \
 | |
|             vsetq_lane_s32(vgetq_lane_s32(vreinterpretq_s32_m128i(a),       \
 | |
|                                           ((imm) >> 2) & 0x3),              \
 | |
|                            vmovq_n_s32(vgetq_lane_s32(                      \
 | |
|                                vreinterpretq_s32_m128i(a), (imm) & (0x3))), \
 | |
|                            1),                                              \
 | |
|             2),                                                             \
 | |
|         3))
 | |
| 
 | |
| // Takes the upper 64 bits of a and places it in the low end of the result
 | |
| // Takes the lower 64 bits of a and places it into the high end of the result.
 | |
| FORCE_INLINE __m128i _mm_shuffle_epi_1032(__m128i a)
 | |
| {
 | |
|     int32x2_t a32 = vget_high_s32(vreinterpretq_s32_m128i(a));
 | |
|     int32x2_t a10 = vget_low_s32(vreinterpretq_s32_m128i(a));
 | |
|     return vreinterpretq_m128i_s32(vcombine_s32(a32, a10));
 | |
| }
 | |
| 
 | |
| // takes the lower two 32-bit values from a and swaps them and places in low end
 | |
| // of result takes the higher two 32 bit values from a and swaps them and places
 | |
| // in high end of result.
 | |
| FORCE_INLINE __m128i _mm_shuffle_epi_2301(__m128i a)
 | |
| {
 | |
|     int32x2_t a01 = vrev64_s32(vget_low_s32(vreinterpretq_s32_m128i(a)));
 | |
|     int32x2_t a23 = vrev64_s32(vget_high_s32(vreinterpretq_s32_m128i(a)));
 | |
|     return vreinterpretq_m128i_s32(vcombine_s32(a01, a23));
 | |
| }
 | |
| 
 | |
| // rotates the least significant 32 bits into the most significant 32 bits, and
 | |
| // shifts the rest down
 | |
| FORCE_INLINE __m128i _mm_shuffle_epi_0321(__m128i a)
 | |
| {
 | |
|     return vreinterpretq_m128i_s32(
 | |
|         vextq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(a), 1));
 | |
| }
 | |
| 
 | |
| // rotates the most significant 32 bits into the least significant 32 bits, and
 | |
| // shifts the rest up
 | |
| FORCE_INLINE __m128i _mm_shuffle_epi_2103(__m128i a)
 | |
| {
 | |
|     return vreinterpretq_m128i_s32(
 | |
|         vextq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(a), 3));
 | |
| }
 | |
| 
 | |
| // gets the lower 64 bits of a, and places it in the upper 64 bits
 | |
| // gets the lower 64 bits of a and places it in the lower 64 bits
 | |
| FORCE_INLINE __m128i _mm_shuffle_epi_1010(__m128i a)
 | |
| {
 | |
|     int32x2_t a10 = vget_low_s32(vreinterpretq_s32_m128i(a));
 | |
|     return vreinterpretq_m128i_s32(vcombine_s32(a10, a10));
 | |
| }
 | |
| 
 | |
| // gets the lower 64 bits of a, swaps the 0 and 1 elements, and places it in the
 | |
| // lower 64 bits gets the lower 64 bits of a, and places it in the upper 64 bits
 | |
| FORCE_INLINE __m128i _mm_shuffle_epi_1001(__m128i a)
 | |
| {
 | |
|     int32x2_t a01 = vrev64_s32(vget_low_s32(vreinterpretq_s32_m128i(a)));
 | |
|     int32x2_t a10 = vget_low_s32(vreinterpretq_s32_m128i(a));
 | |
|     return vreinterpretq_m128i_s32(vcombine_s32(a01, a10));
 | |
| }
 | |
| 
 | |
| // gets the lower 64 bits of a, swaps the 0 and 1 elements and places it in the
 | |
| // upper 64 bits gets the lower 64 bits of a, swaps the 0 and 1 elements, and
 | |
| // places it in the lower 64 bits
 | |
| FORCE_INLINE __m128i _mm_shuffle_epi_0101(__m128i a)
 | |
| {
 | |
|     int32x2_t a01 = vrev64_s32(vget_low_s32(vreinterpretq_s32_m128i(a)));
 | |
|     return vreinterpretq_m128i_s32(vcombine_s32(a01, a01));
 | |
| }
 | |
| 
 | |
| FORCE_INLINE __m128i _mm_shuffle_epi_2211(__m128i a)
 | |
| {
 | |
|     int32x2_t a11 = vdup_lane_s32(vget_low_s32(vreinterpretq_s32_m128i(a)), 1);
 | |
|     int32x2_t a22 = vdup_lane_s32(vget_high_s32(vreinterpretq_s32_m128i(a)), 0);
 | |
|     return vreinterpretq_m128i_s32(vcombine_s32(a11, a22));
 | |
| }
 | |
| 
 | |
| FORCE_INLINE __m128i _mm_shuffle_epi_0122(__m128i a)
 | |
| {
 | |
|     int32x2_t a22 = vdup_lane_s32(vget_high_s32(vreinterpretq_s32_m128i(a)), 0);
 | |
|     int32x2_t a01 = vrev64_s32(vget_low_s32(vreinterpretq_s32_m128i(a)));
 | |
|     return vreinterpretq_m128i_s32(vcombine_s32(a22, a01));
 | |
| }
 | |
| 
 | |
| FORCE_INLINE __m128i _mm_shuffle_epi_3332(__m128i a)
 | |
| {
 | |
|     int32x2_t a32 = vget_high_s32(vreinterpretq_s32_m128i(a));
 | |
|     int32x2_t a33 = vdup_lane_s32(vget_high_s32(vreinterpretq_s32_m128i(a)), 1);
 | |
|     return vreinterpretq_m128i_s32(vcombine_s32(a32, a33));
 | |
| }
 | |
| 
 | |
| #if defined(__aarch64__) || defined(_M_ARM64)
 | |
| #define _mm_shuffle_epi32_splat(a, imm) \
 | |
|     vreinterpretq_m128i_s32(vdupq_laneq_s32(vreinterpretq_s32_m128i(a), (imm)))
 | |
| #else
 | |
| #define _mm_shuffle_epi32_splat(a, imm) \
 | |
|     vreinterpretq_m128i_s32(            \
 | |
|         vdupq_n_s32(vgetq_lane_s32(vreinterpretq_s32_m128i(a), (imm))))
 | |
| #endif
 | |
| 
 | |
| // NEON does not support a general purpose permute intrinsic.
 | |
| // Shuffle single-precision (32-bit) floating-point elements in a using the
 | |
| // control in imm8, and store the results in dst.
 | |
| //
 | |
| // C equivalent:
 | |
| //   __m128 _mm_shuffle_ps_default(__m128 a, __m128 b,
 | |
| //                                 __constrange(0, 255) int imm) {
 | |
| //       __m128 ret;
 | |
| //       ret[0] = a[imm        & 0x3];   ret[1] = a[(imm >> 2) & 0x3];
 | |
| //       ret[2] = b[(imm >> 4) & 0x03];  ret[3] = b[(imm >> 6) & 0x03];
 | |
| //       return ret;
 | |
| //   }
 | |
| //
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_shuffle_ps
 | |
| #define _mm_shuffle_ps_default(a, b, imm)                                      \
 | |
|     vreinterpretq_m128_f32(vsetq_lane_f32(                                     \
 | |
|         vgetq_lane_f32(vreinterpretq_f32_m128(b), ((imm) >> 6) & 0x3),         \
 | |
|         vsetq_lane_f32(                                                        \
 | |
|             vgetq_lane_f32(vreinterpretq_f32_m128(b), ((imm) >> 4) & 0x3),     \
 | |
|             vsetq_lane_f32(                                                    \
 | |
|                 vgetq_lane_f32(vreinterpretq_f32_m128(a), ((imm) >> 2) & 0x3), \
 | |
|                 vmovq_n_f32(                                                   \
 | |
|                     vgetq_lane_f32(vreinterpretq_f32_m128(a), (imm) & (0x3))), \
 | |
|                 1),                                                            \
 | |
|             2),                                                                \
 | |
|         3))
 | |
| 
 | |
| // Shuffle 16-bit integers in the low 64 bits of a using the control in imm8.
 | |
| // Store the results in the low 64 bits of dst, with the high 64 bits being
 | |
| // copied from a to dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_shufflelo_epi16
 | |
| #define _mm_shufflelo_epi16_function(a, imm)                                  \
 | |
|     _sse2neon_define1(                                                        \
 | |
|         __m128i, a, int16x8_t ret = vreinterpretq_s16_m128i(_a);              \
 | |
|         int16x4_t lowBits = vget_low_s16(ret);                                \
 | |
|         ret = vsetq_lane_s16(vget_lane_s16(lowBits, (imm) & (0x3)), ret, 0);  \
 | |
|         ret = vsetq_lane_s16(vget_lane_s16(lowBits, ((imm) >> 2) & 0x3), ret, \
 | |
|                              1);                                              \
 | |
|         ret = vsetq_lane_s16(vget_lane_s16(lowBits, ((imm) >> 4) & 0x3), ret, \
 | |
|                              2);                                              \
 | |
|         ret = vsetq_lane_s16(vget_lane_s16(lowBits, ((imm) >> 6) & 0x3), ret, \
 | |
|                              3);                                              \
 | |
|         _sse2neon_return(vreinterpretq_m128i_s16(ret));)
 | |
| 
 | |
| // Shuffle 16-bit integers in the high 64 bits of a using the control in imm8.
 | |
| // Store the results in the high 64 bits of dst, with the low 64 bits being
 | |
| // copied from a to dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_shufflehi_epi16
 | |
| #define _mm_shufflehi_epi16_function(a, imm)                                   \
 | |
|     _sse2neon_define1(                                                         \
 | |
|         __m128i, a, int16x8_t ret = vreinterpretq_s16_m128i(_a);               \
 | |
|         int16x4_t highBits = vget_high_s16(ret);                               \
 | |
|         ret = vsetq_lane_s16(vget_lane_s16(highBits, (imm) & (0x3)), ret, 4);  \
 | |
|         ret = vsetq_lane_s16(vget_lane_s16(highBits, ((imm) >> 2) & 0x3), ret, \
 | |
|                              5);                                               \
 | |
|         ret = vsetq_lane_s16(vget_lane_s16(highBits, ((imm) >> 4) & 0x3), ret, \
 | |
|                              6);                                               \
 | |
|         ret = vsetq_lane_s16(vget_lane_s16(highBits, ((imm) >> 6) & 0x3), ret, \
 | |
|                              7);                                               \
 | |
|         _sse2neon_return(vreinterpretq_m128i_s16(ret));)
 | |
| 
 | |
| /* MMX */
 | |
| 
 | |
| //_mm_empty is a no-op on arm
 | |
| FORCE_INLINE void _mm_empty(void) {}
 | |
| 
 | |
| /* SSE */
 | |
| 
 | |
| // Add packed single-precision (32-bit) floating-point elements in a and b, and
 | |
| // store the results in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_add_ps
 | |
| FORCE_INLINE __m128 _mm_add_ps(__m128 a, __m128 b)
 | |
| {
 | |
|     return vreinterpretq_m128_f32(
 | |
|         vaddq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
 | |
| }
 | |
| 
 | |
| // Add the lower single-precision (32-bit) floating-point element in a and b,
 | |
| // store the result in the lower element of dst, and copy the upper 3 packed
 | |
| // elements from a to the upper elements of dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_add_ss
 | |
| FORCE_INLINE __m128 _mm_add_ss(__m128 a, __m128 b)
 | |
| {
 | |
|     float32_t b0 = vgetq_lane_f32(vreinterpretq_f32_m128(b), 0);
 | |
|     float32x4_t value = vsetq_lane_f32(b0, vdupq_n_f32(0), 0);
 | |
|     // the upper values in the result must be the remnants of <a>.
 | |
|     return vreinterpretq_m128_f32(vaddq_f32(a, value));
 | |
| }
 | |
| 
 | |
| // Compute the bitwise AND of packed single-precision (32-bit) floating-point
 | |
| // elements in a and b, and store the results in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_and_ps
 | |
| FORCE_INLINE __m128 _mm_and_ps(__m128 a, __m128 b)
 | |
| {
 | |
|     return vreinterpretq_m128_s32(
 | |
|         vandq_s32(vreinterpretq_s32_m128(a), vreinterpretq_s32_m128(b)));
 | |
| }
 | |
| 
 | |
| // Compute the bitwise NOT of packed single-precision (32-bit) floating-point
 | |
| // elements in a and then AND with b, and store the results in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_andnot_ps
 | |
| FORCE_INLINE __m128 _mm_andnot_ps(__m128 a, __m128 b)
 | |
| {
 | |
|     return vreinterpretq_m128_s32(
 | |
|         vbicq_s32(vreinterpretq_s32_m128(b),
 | |
|                   vreinterpretq_s32_m128(a)));  // *NOTE* argument swap
 | |
| }
 | |
| 
 | |
| // Average packed unsigned 16-bit integers in a and b, and store the results in
 | |
| // dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_avg_pu16
 | |
| FORCE_INLINE __m64 _mm_avg_pu16(__m64 a, __m64 b)
 | |
| {
 | |
|     return vreinterpret_m64_u16(
 | |
|         vrhadd_u16(vreinterpret_u16_m64(a), vreinterpret_u16_m64(b)));
 | |
| }
 | |
| 
 | |
| // Average packed unsigned 8-bit integers in a and b, and store the results in
 | |
| // dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_avg_pu8
 | |
| FORCE_INLINE __m64 _mm_avg_pu8(__m64 a, __m64 b)
 | |
| {
 | |
|     return vreinterpret_m64_u8(
 | |
|         vrhadd_u8(vreinterpret_u8_m64(a), vreinterpret_u8_m64(b)));
 | |
| }
 | |
| 
 | |
| // Compare packed single-precision (32-bit) floating-point elements in a and b
 | |
| // for equality, and store the results in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpeq_ps
 | |
| FORCE_INLINE __m128 _mm_cmpeq_ps(__m128 a, __m128 b)
 | |
| {
 | |
|     return vreinterpretq_m128_u32(
 | |
|         vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
 | |
| }
 | |
| 
 | |
| // Compare the lower single-precision (32-bit) floating-point elements in a and
 | |
| // b for equality, store the result in the lower element of dst, and copy the
 | |
| // upper 3 packed elements from a to the upper elements of dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpeq_ss
 | |
| FORCE_INLINE __m128 _mm_cmpeq_ss(__m128 a, __m128 b)
 | |
| {
 | |
|     return _mm_move_ss(a, _mm_cmpeq_ps(a, b));
 | |
| }
 | |
| 
 | |
| // Compare packed single-precision (32-bit) floating-point elements in a and b
 | |
| // for greater-than-or-equal, and store the results in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpge_ps
 | |
| FORCE_INLINE __m128 _mm_cmpge_ps(__m128 a, __m128 b)
 | |
| {
 | |
|     return vreinterpretq_m128_u32(
 | |
|         vcgeq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
 | |
| }
 | |
| 
 | |
| // Compare the lower single-precision (32-bit) floating-point elements in a and
 | |
| // b for greater-than-or-equal, store the result in the lower element of dst,
 | |
| // and copy the upper 3 packed elements from a to the upper elements of dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpge_ss
 | |
| FORCE_INLINE __m128 _mm_cmpge_ss(__m128 a, __m128 b)
 | |
| {
 | |
|     return _mm_move_ss(a, _mm_cmpge_ps(a, b));
 | |
| }
 | |
| 
 | |
| // Compare packed single-precision (32-bit) floating-point elements in a and b
 | |
| // for greater-than, and store the results in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpgt_ps
 | |
| FORCE_INLINE __m128 _mm_cmpgt_ps(__m128 a, __m128 b)
 | |
| {
 | |
|     return vreinterpretq_m128_u32(
 | |
|         vcgtq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
 | |
| }
 | |
| 
 | |
| // Compare the lower single-precision (32-bit) floating-point elements in a and
 | |
| // b for greater-than, store the result in the lower element of dst, and copy
 | |
| // the upper 3 packed elements from a to the upper elements of dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpgt_ss
 | |
| FORCE_INLINE __m128 _mm_cmpgt_ss(__m128 a, __m128 b)
 | |
| {
 | |
|     return _mm_move_ss(a, _mm_cmpgt_ps(a, b));
 | |
| }
 | |
| 
 | |
| // Compare packed single-precision (32-bit) floating-point elements in a and b
 | |
| // for less-than-or-equal, and store the results in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmple_ps
 | |
| FORCE_INLINE __m128 _mm_cmple_ps(__m128 a, __m128 b)
 | |
| {
 | |
|     return vreinterpretq_m128_u32(
 | |
|         vcleq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
 | |
| }
 | |
| 
 | |
| // Compare the lower single-precision (32-bit) floating-point elements in a and
 | |
| // b for less-than-or-equal, store the result in the lower element of dst, and
 | |
| // copy the upper 3 packed elements from a to the upper elements of dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmple_ss
 | |
| FORCE_INLINE __m128 _mm_cmple_ss(__m128 a, __m128 b)
 | |
| {
 | |
|     return _mm_move_ss(a, _mm_cmple_ps(a, b));
 | |
| }
 | |
| 
 | |
| // Compare packed single-precision (32-bit) floating-point elements in a and b
 | |
| // for less-than, and store the results in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmplt_ps
 | |
| FORCE_INLINE __m128 _mm_cmplt_ps(__m128 a, __m128 b)
 | |
| {
 | |
|     return vreinterpretq_m128_u32(
 | |
|         vcltq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
 | |
| }
 | |
| 
 | |
| // Compare the lower single-precision (32-bit) floating-point elements in a and
 | |
| // b for less-than, store the result in the lower element of dst, and copy the
 | |
| // upper 3 packed elements from a to the upper elements of dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmplt_ss
 | |
| FORCE_INLINE __m128 _mm_cmplt_ss(__m128 a, __m128 b)
 | |
| {
 | |
|     return _mm_move_ss(a, _mm_cmplt_ps(a, b));
 | |
| }
 | |
| 
 | |
| // Compare packed single-precision (32-bit) floating-point elements in a and b
 | |
| // for not-equal, and store the results in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpneq_ps
 | |
| FORCE_INLINE __m128 _mm_cmpneq_ps(__m128 a, __m128 b)
 | |
| {
 | |
|     return vreinterpretq_m128_u32(vmvnq_u32(
 | |
|         vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))));
 | |
| }
 | |
| 
 | |
| // Compare the lower single-precision (32-bit) floating-point elements in a and
 | |
| // b for not-equal, store the result in the lower element of dst, and copy the
 | |
| // upper 3 packed elements from a to the upper elements of dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpneq_ss
 | |
| FORCE_INLINE __m128 _mm_cmpneq_ss(__m128 a, __m128 b)
 | |
| {
 | |
|     return _mm_move_ss(a, _mm_cmpneq_ps(a, b));
 | |
| }
 | |
| 
 | |
| // Compare packed single-precision (32-bit) floating-point elements in a and b
 | |
| // for not-greater-than-or-equal, and store the results in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpnge_ps
 | |
| FORCE_INLINE __m128 _mm_cmpnge_ps(__m128 a, __m128 b)
 | |
| {
 | |
|     return vreinterpretq_m128_u32(vmvnq_u32(
 | |
|         vcgeq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))));
 | |
| }
 | |
| 
 | |
| // Compare the lower single-precision (32-bit) floating-point elements in a and
 | |
| // b for not-greater-than-or-equal, store the result in the lower element of
 | |
| // dst, and copy the upper 3 packed elements from a to the upper elements of
 | |
| // dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpnge_ss
 | |
| FORCE_INLINE __m128 _mm_cmpnge_ss(__m128 a, __m128 b)
 | |
| {
 | |
|     return _mm_move_ss(a, _mm_cmpnge_ps(a, b));
 | |
| }
 | |
| 
 | |
| // Compare packed single-precision (32-bit) floating-point elements in a and b
 | |
| // for not-greater-than, and store the results in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpngt_ps
 | |
| FORCE_INLINE __m128 _mm_cmpngt_ps(__m128 a, __m128 b)
 | |
| {
 | |
|     return vreinterpretq_m128_u32(vmvnq_u32(
 | |
|         vcgtq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))));
 | |
| }
 | |
| 
 | |
| // Compare the lower single-precision (32-bit) floating-point elements in a and
 | |
| // b for not-greater-than, store the result in the lower element of dst, and
 | |
| // copy the upper 3 packed elements from a to the upper elements of dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpngt_ss
 | |
| FORCE_INLINE __m128 _mm_cmpngt_ss(__m128 a, __m128 b)
 | |
| {
 | |
|     return _mm_move_ss(a, _mm_cmpngt_ps(a, b));
 | |
| }
 | |
| 
 | |
| // Compare packed single-precision (32-bit) floating-point elements in a and b
 | |
| // for not-less-than-or-equal, and store the results in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpnle_ps
 | |
| FORCE_INLINE __m128 _mm_cmpnle_ps(__m128 a, __m128 b)
 | |
| {
 | |
|     return vreinterpretq_m128_u32(vmvnq_u32(
 | |
|         vcleq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))));
 | |
| }
 | |
| 
 | |
| // Compare the lower single-precision (32-bit) floating-point elements in a and
 | |
| // b for not-less-than-or-equal, store the result in the lower element of dst,
 | |
| // and copy the upper 3 packed elements from a to the upper elements of dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpnle_ss
 | |
| FORCE_INLINE __m128 _mm_cmpnle_ss(__m128 a, __m128 b)
 | |
| {
 | |
|     return _mm_move_ss(a, _mm_cmpnle_ps(a, b));
 | |
| }
 | |
| 
 | |
| // Compare packed single-precision (32-bit) floating-point elements in a and b
 | |
| // for not-less-than, and store the results in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpnlt_ps
 | |
| FORCE_INLINE __m128 _mm_cmpnlt_ps(__m128 a, __m128 b)
 | |
| {
 | |
|     return vreinterpretq_m128_u32(vmvnq_u32(
 | |
|         vcltq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))));
 | |
| }
 | |
| 
 | |
| // Compare the lower single-precision (32-bit) floating-point elements in a and
 | |
| // b for not-less-than, store the result in the lower element of dst, and copy
 | |
| // the upper 3 packed elements from a to the upper elements of dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpnlt_ss
 | |
| FORCE_INLINE __m128 _mm_cmpnlt_ss(__m128 a, __m128 b)
 | |
| {
 | |
|     return _mm_move_ss(a, _mm_cmpnlt_ps(a, b));
 | |
| }
 | |
| 
 | |
| // Compare packed single-precision (32-bit) floating-point elements in a and b
 | |
| // to see if neither is NaN, and store the results in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpord_ps
 | |
| //
 | |
| // See also:
 | |
| // http://stackoverflow.com/questions/8627331/what-does-ordered-unordered-comparison-mean
 | |
| // http://stackoverflow.com/questions/29349621/neon-isnanval-intrinsics
 | |
| FORCE_INLINE __m128 _mm_cmpord_ps(__m128 a, __m128 b)
 | |
| {
 | |
|     // Note: NEON does not have ordered compare builtin
 | |
|     // Need to compare a eq a and b eq b to check for NaN
 | |
|     // Do AND of results to get final
 | |
|     uint32x4_t ceqaa =
 | |
|         vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a));
 | |
|     uint32x4_t ceqbb =
 | |
|         vceqq_f32(vreinterpretq_f32_m128(b), vreinterpretq_f32_m128(b));
 | |
|     return vreinterpretq_m128_u32(vandq_u32(ceqaa, ceqbb));
 | |
| }
 | |
| 
 | |
| // Compare the lower single-precision (32-bit) floating-point elements in a and
 | |
| // b to see if neither is NaN, store the result in the lower element of dst, and
 | |
| // copy the upper 3 packed elements from a to the upper elements of dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpord_ss
 | |
| FORCE_INLINE __m128 _mm_cmpord_ss(__m128 a, __m128 b)
 | |
| {
 | |
|     return _mm_move_ss(a, _mm_cmpord_ps(a, b));
 | |
| }
 | |
| 
 | |
| // Compare packed single-precision (32-bit) floating-point elements in a and b
 | |
| // to see if either is NaN, and store the results in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpunord_ps
 | |
| FORCE_INLINE __m128 _mm_cmpunord_ps(__m128 a, __m128 b)
 | |
| {
 | |
|     uint32x4_t f32a =
 | |
|         vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a));
 | |
|     uint32x4_t f32b =
 | |
|         vceqq_f32(vreinterpretq_f32_m128(b), vreinterpretq_f32_m128(b));
 | |
|     return vreinterpretq_m128_u32(vmvnq_u32(vandq_u32(f32a, f32b)));
 | |
| }
 | |
| 
 | |
| // Compare the lower single-precision (32-bit) floating-point elements in a and
 | |
| // b to see if either is NaN, store the result in the lower element of dst, and
 | |
| // copy the upper 3 packed elements from a to the upper elements of dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpunord_ss
 | |
| FORCE_INLINE __m128 _mm_cmpunord_ss(__m128 a, __m128 b)
 | |
| {
 | |
|     return _mm_move_ss(a, _mm_cmpunord_ps(a, b));
 | |
| }
 | |
| 
 | |
| // Compare the lower single-precision (32-bit) floating-point element in a and b
 | |
| // for equality, and return the boolean result (0 or 1).
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_comieq_ss
 | |
| FORCE_INLINE int _mm_comieq_ss(__m128 a, __m128 b)
 | |
| {
 | |
|     uint32x4_t a_eq_b =
 | |
|         vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b));
 | |
|     return vgetq_lane_u32(a_eq_b, 0) & 0x1;
 | |
| }
 | |
| 
 | |
| // Compare the lower single-precision (32-bit) floating-point element in a and b
 | |
| // for greater-than-or-equal, and return the boolean result (0 or 1).
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_comige_ss
 | |
| FORCE_INLINE int _mm_comige_ss(__m128 a, __m128 b)
 | |
| {
 | |
|     uint32x4_t a_ge_b =
 | |
|         vcgeq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b));
 | |
|     return vgetq_lane_u32(a_ge_b, 0) & 0x1;
 | |
| }
 | |
| 
 | |
| // Compare the lower single-precision (32-bit) floating-point element in a and b
 | |
| // for greater-than, and return the boolean result (0 or 1).
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_comigt_ss
 | |
| FORCE_INLINE int _mm_comigt_ss(__m128 a, __m128 b)
 | |
| {
 | |
|     uint32x4_t a_gt_b =
 | |
|         vcgtq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b));
 | |
|     return vgetq_lane_u32(a_gt_b, 0) & 0x1;
 | |
| }
 | |
| 
 | |
| // Compare the lower single-precision (32-bit) floating-point element in a and b
 | |
| // for less-than-or-equal, and return the boolean result (0 or 1).
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_comile_ss
 | |
| FORCE_INLINE int _mm_comile_ss(__m128 a, __m128 b)
 | |
| {
 | |
|     uint32x4_t a_le_b =
 | |
|         vcleq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b));
 | |
|     return vgetq_lane_u32(a_le_b, 0) & 0x1;
 | |
| }
 | |
| 
 | |
| // Compare the lower single-precision (32-bit) floating-point element in a and b
 | |
| // for less-than, and return the boolean result (0 or 1).
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_comilt_ss
 | |
| FORCE_INLINE int _mm_comilt_ss(__m128 a, __m128 b)
 | |
| {
 | |
|     uint32x4_t a_lt_b =
 | |
|         vcltq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b));
 | |
|     return vgetq_lane_u32(a_lt_b, 0) & 0x1;
 | |
| }
 | |
| 
 | |
| // Compare the lower single-precision (32-bit) floating-point element in a and b
 | |
| // for not-equal, and return the boolean result (0 or 1).
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_comineq_ss
 | |
| FORCE_INLINE int _mm_comineq_ss(__m128 a, __m128 b)
 | |
| {
 | |
|     return !_mm_comieq_ss(a, b);
 | |
| }
 | |
| 
 | |
| // Convert packed signed 32-bit integers in b to packed single-precision
 | |
| // (32-bit) floating-point elements, store the results in the lower 2 elements
 | |
| // of dst, and copy the upper 2 packed elements from a to the upper elements of
 | |
| // dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvt_pi2ps
 | |
| FORCE_INLINE __m128 _mm_cvt_pi2ps(__m128 a, __m64 b)
 | |
| {
 | |
|     return vreinterpretq_m128_f32(
 | |
|         vcombine_f32(vcvt_f32_s32(vreinterpret_s32_m64(b)),
 | |
|                      vget_high_f32(vreinterpretq_f32_m128(a))));
 | |
| }
 | |
| 
 | |
| // Convert packed single-precision (32-bit) floating-point elements in a to
 | |
| // packed 32-bit integers, and store the results in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvt_ps2pi
 | |
| FORCE_INLINE __m64 _mm_cvt_ps2pi(__m128 a)
 | |
| {
 | |
| #if (defined(__aarch64__) || defined(_M_ARM64)) || \
 | |
|     defined(__ARM_FEATURE_DIRECTED_ROUNDING)
 | |
|     return vreinterpret_m64_s32(
 | |
|         vget_low_s32(vcvtnq_s32_f32(vrndiq_f32(vreinterpretq_f32_m128(a)))));
 | |
| #else
 | |
|     return vreinterpret_m64_s32(vcvt_s32_f32(vget_low_f32(
 | |
|         vreinterpretq_f32_m128(_mm_round_ps(a, _MM_FROUND_CUR_DIRECTION)))));
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // Convert the signed 32-bit integer b to a single-precision (32-bit)
 | |
| // floating-point element, store the result in the lower element of dst, and
 | |
| // copy the upper 3 packed elements from a to the upper elements of dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvt_si2ss
 | |
| FORCE_INLINE __m128 _mm_cvt_si2ss(__m128 a, int b)
 | |
| {
 | |
|     return vreinterpretq_m128_f32(
 | |
|         vsetq_lane_f32((float) b, vreinterpretq_f32_m128(a), 0));
 | |
| }
 | |
| 
 | |
| // Convert the lower single-precision (32-bit) floating-point element in a to a
 | |
| // 32-bit integer, and store the result in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvt_ss2si
 | |
| FORCE_INLINE int _mm_cvt_ss2si(__m128 a)
 | |
| {
 | |
| #if (defined(__aarch64__) || defined(_M_ARM64)) || \
 | |
|     defined(__ARM_FEATURE_DIRECTED_ROUNDING)
 | |
|     return vgetq_lane_s32(vcvtnq_s32_f32(vrndiq_f32(vreinterpretq_f32_m128(a))),
 | |
|                           0);
 | |
| #else
 | |
|     float32_t data = vgetq_lane_f32(
 | |
|         vreinterpretq_f32_m128(_mm_round_ps(a, _MM_FROUND_CUR_DIRECTION)), 0);
 | |
|     return (int32_t) data;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // Convert packed 16-bit integers in a to packed single-precision (32-bit)
 | |
| // floating-point elements, and store the results in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtpi16_ps
 | |
| FORCE_INLINE __m128 _mm_cvtpi16_ps(__m64 a)
 | |
| {
 | |
|     return vreinterpretq_m128_f32(
 | |
|         vcvtq_f32_s32(vmovl_s16(vreinterpret_s16_m64(a))));
 | |
| }
 | |
| 
 | |
| // Convert packed 32-bit integers in b to packed single-precision (32-bit)
 | |
| // floating-point elements, store the results in the lower 2 elements of dst,
 | |
| // and copy the upper 2 packed elements from a to the upper elements of dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtpi32_ps
 | |
| FORCE_INLINE __m128 _mm_cvtpi32_ps(__m128 a, __m64 b)
 | |
| {
 | |
|     return vreinterpretq_m128_f32(
 | |
|         vcombine_f32(vcvt_f32_s32(vreinterpret_s32_m64(b)),
 | |
|                      vget_high_f32(vreinterpretq_f32_m128(a))));
 | |
| }
 | |
| 
 | |
| // Convert packed signed 32-bit integers in a to packed single-precision
 | |
| // (32-bit) floating-point elements, store the results in the lower 2 elements
 | |
| // of dst, then convert the packed signed 32-bit integers in b to
 | |
| // single-precision (32-bit) floating-point element, and store the results in
 | |
| // the upper 2 elements of dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtpi32x2_ps
 | |
| FORCE_INLINE __m128 _mm_cvtpi32x2_ps(__m64 a, __m64 b)
 | |
| {
 | |
|     return vreinterpretq_m128_f32(vcvtq_f32_s32(
 | |
|         vcombine_s32(vreinterpret_s32_m64(a), vreinterpret_s32_m64(b))));
 | |
| }
 | |
| 
 | |
| // Convert the lower packed 8-bit integers in a to packed single-precision
 | |
| // (32-bit) floating-point elements, and store the results in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtpi8_ps
 | |
| FORCE_INLINE __m128 _mm_cvtpi8_ps(__m64 a)
 | |
| {
 | |
|     return vreinterpretq_m128_f32(vcvtq_f32_s32(
 | |
|         vmovl_s16(vget_low_s16(vmovl_s8(vreinterpret_s8_m64(a))))));
 | |
| }
 | |
| 
 | |
| // Convert packed single-precision (32-bit) floating-point elements in a to
 | |
| // packed 16-bit integers, and store the results in dst. Note: this intrinsic
 | |
| // will generate 0x7FFF, rather than 0x8000, for input values between 0x7FFF and
 | |
| // 0x7FFFFFFF.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtps_pi16
 | |
| FORCE_INLINE __m64 _mm_cvtps_pi16(__m128 a)
 | |
| {
 | |
|     return vreinterpret_m64_s16(
 | |
|         vqmovn_s32(vreinterpretq_s32_m128i(_mm_cvtps_epi32(a))));
 | |
| }
 | |
| 
 | |
| // Convert packed single-precision (32-bit) floating-point elements in a to
 | |
| // packed 32-bit integers, and store the results in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtps_pi32
 | |
| #define _mm_cvtps_pi32(a) _mm_cvt_ps2pi(a)
 | |
| 
 | |
| // Convert packed single-precision (32-bit) floating-point elements in a to
 | |
| // packed 8-bit integers, and store the results in lower 4 elements of dst.
 | |
| // Note: this intrinsic will generate 0x7F, rather than 0x80, for input values
 | |
| // between 0x7F and 0x7FFFFFFF.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtps_pi8
 | |
| FORCE_INLINE __m64 _mm_cvtps_pi8(__m128 a)
 | |
| {
 | |
|     return vreinterpret_m64_s8(vqmovn_s16(
 | |
|         vcombine_s16(vreinterpret_s16_m64(_mm_cvtps_pi16(a)), vdup_n_s16(0))));
 | |
| }
 | |
| 
 | |
| // Convert packed unsigned 16-bit integers in a to packed single-precision
 | |
| // (32-bit) floating-point elements, and store the results in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtpu16_ps
 | |
| FORCE_INLINE __m128 _mm_cvtpu16_ps(__m64 a)
 | |
| {
 | |
|     return vreinterpretq_m128_f32(
 | |
|         vcvtq_f32_u32(vmovl_u16(vreinterpret_u16_m64(a))));
 | |
| }
 | |
| 
 | |
| // Convert the lower packed unsigned 8-bit integers in a to packed
 | |
| // single-precision (32-bit) floating-point elements, and store the results in
 | |
| // dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtpu8_ps
 | |
| FORCE_INLINE __m128 _mm_cvtpu8_ps(__m64 a)
 | |
| {
 | |
|     return vreinterpretq_m128_f32(vcvtq_f32_u32(
 | |
|         vmovl_u16(vget_low_u16(vmovl_u8(vreinterpret_u8_m64(a))))));
 | |
| }
 | |
| 
 | |
| // Convert the signed 32-bit integer b to a single-precision (32-bit)
 | |
| // floating-point element, store the result in the lower element of dst, and
 | |
| // copy the upper 3 packed elements from a to the upper elements of dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsi32_ss
 | |
| #define _mm_cvtsi32_ss(a, b) _mm_cvt_si2ss(a, b)
 | |
| 
 | |
| // Convert the signed 64-bit integer b to a single-precision (32-bit)
 | |
| // floating-point element, store the result in the lower element of dst, and
 | |
| // copy the upper 3 packed elements from a to the upper elements of dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsi64_ss
 | |
| FORCE_INLINE __m128 _mm_cvtsi64_ss(__m128 a, int64_t b)
 | |
| {
 | |
|     return vreinterpretq_m128_f32(
 | |
|         vsetq_lane_f32((float) b, vreinterpretq_f32_m128(a), 0));
 | |
| }
 | |
| 
 | |
| // Copy the lower single-precision (32-bit) floating-point element of a to dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtss_f32
 | |
| FORCE_INLINE float _mm_cvtss_f32(__m128 a)
 | |
| {
 | |
|     return vgetq_lane_f32(vreinterpretq_f32_m128(a), 0);
 | |
| }
 | |
| 
 | |
| // Convert the lower single-precision (32-bit) floating-point element in a to a
 | |
| // 32-bit integer, and store the result in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtss_si32
 | |
| #define _mm_cvtss_si32(a) _mm_cvt_ss2si(a)
 | |
| 
 | |
| // Convert the lower single-precision (32-bit) floating-point element in a to a
 | |
| // 64-bit integer, and store the result in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtss_si64
 | |
| FORCE_INLINE int64_t _mm_cvtss_si64(__m128 a)
 | |
| {
 | |
| #if (defined(__aarch64__) || defined(_M_ARM64)) || \
 | |
|     defined(__ARM_FEATURE_DIRECTED_ROUNDING)
 | |
|     return (int64_t) vgetq_lane_f32(vrndiq_f32(vreinterpretq_f32_m128(a)), 0);
 | |
| #else
 | |
|     float32_t data = vgetq_lane_f32(
 | |
|         vreinterpretq_f32_m128(_mm_round_ps(a, _MM_FROUND_CUR_DIRECTION)), 0);
 | |
|     return (int64_t) data;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // Convert packed single-precision (32-bit) floating-point elements in a to
 | |
| // packed 32-bit integers with truncation, and store the results in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtt_ps2pi
 | |
| FORCE_INLINE __m64 _mm_cvtt_ps2pi(__m128 a)
 | |
| {
 | |
|     return vreinterpret_m64_s32(
 | |
|         vget_low_s32(vcvtq_s32_f32(vreinterpretq_f32_m128(a))));
 | |
| }
 | |
| 
 | |
| // Convert the lower single-precision (32-bit) floating-point element in a to a
 | |
| // 32-bit integer with truncation, and store the result in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtt_ss2si
 | |
| FORCE_INLINE int _mm_cvtt_ss2si(__m128 a)
 | |
| {
 | |
|     return vgetq_lane_s32(vcvtq_s32_f32(vreinterpretq_f32_m128(a)), 0);
 | |
| }
 | |
| 
 | |
| // Convert packed single-precision (32-bit) floating-point elements in a to
 | |
| // packed 32-bit integers with truncation, and store the results in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvttps_pi32
 | |
| #define _mm_cvttps_pi32(a) _mm_cvtt_ps2pi(a)
 | |
| 
 | |
| // Convert the lower single-precision (32-bit) floating-point element in a to a
 | |
| // 32-bit integer with truncation, and store the result in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvttss_si32
 | |
| #define _mm_cvttss_si32(a) _mm_cvtt_ss2si(a)
 | |
| 
 | |
| // Convert the lower single-precision (32-bit) floating-point element in a to a
 | |
| // 64-bit integer with truncation, and store the result in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvttss_si64
 | |
| FORCE_INLINE int64_t _mm_cvttss_si64(__m128 a)
 | |
| {
 | |
|     return (int64_t) vgetq_lane_f32(vreinterpretq_f32_m128(a), 0);
 | |
| }
 | |
| 
 | |
| // Divide packed single-precision (32-bit) floating-point elements in a by
 | |
| // packed elements in b, and store the results in dst.
 | |
| // Due to ARMv7-A NEON's lack of a precise division intrinsic, we implement
 | |
| // division by multiplying a by b's reciprocal before using the Newton-Raphson
 | |
| // method to approximate the results.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_div_ps
 | |
| FORCE_INLINE __m128 _mm_div_ps(__m128 a, __m128 b)
 | |
| {
 | |
| #if (defined(__aarch64__) || defined(_M_ARM64)) && !SSE2NEON_PRECISE_DIV
 | |
|     return vreinterpretq_m128_f32(
 | |
|         vdivq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
 | |
| #else
 | |
|     float32x4_t recip = vrecpeq_f32(vreinterpretq_f32_m128(b));
 | |
|     recip = vmulq_f32(recip, vrecpsq_f32(recip, vreinterpretq_f32_m128(b)));
 | |
|     // Additional Netwon-Raphson iteration for accuracy
 | |
|     recip = vmulq_f32(recip, vrecpsq_f32(recip, vreinterpretq_f32_m128(b)));
 | |
|     return vreinterpretq_m128_f32(vmulq_f32(vreinterpretq_f32_m128(a), recip));
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // Divide the lower single-precision (32-bit) floating-point element in a by the
 | |
| // lower single-precision (32-bit) floating-point element in b, store the result
 | |
| // in the lower element of dst, and copy the upper 3 packed elements from a to
 | |
| // the upper elements of dst.
 | |
| // Warning: ARMv7-A does not produce the same result compared to Intel and not
 | |
| // IEEE-compliant.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_div_ss
 | |
| FORCE_INLINE __m128 _mm_div_ss(__m128 a, __m128 b)
 | |
| {
 | |
|     float32_t value =
 | |
|         vgetq_lane_f32(vreinterpretq_f32_m128(_mm_div_ps(a, b)), 0);
 | |
|     return vreinterpretq_m128_f32(
 | |
|         vsetq_lane_f32(value, vreinterpretq_f32_m128(a), 0));
 | |
| }
 | |
| 
 | |
| // Extract a 16-bit integer from a, selected with imm8, and store the result in
 | |
| // the lower element of dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_extract_pi16
 | |
| #define _mm_extract_pi16(a, imm) \
 | |
|     (int32_t) vget_lane_u16(vreinterpret_u16_m64(a), (imm))
 | |
| 
 | |
| // Free aligned memory that was allocated with _mm_malloc.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_free
 | |
| #if !defined(SSE2NEON_ALLOC_DEFINED)
 | |
| FORCE_INLINE void _mm_free(void *addr)
 | |
| {
 | |
|     free(addr);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| FORCE_INLINE uint64_t _sse2neon_get_fpcr(void)
 | |
| {
 | |
|     uint64_t value;
 | |
| #if defined(_MSC_VER)
 | |
|     value = _ReadStatusReg(ARM64_FPCR);
 | |
| #else
 | |
|     __asm__ __volatile__("mrs %0, FPCR" : "=r"(value)); /* read */
 | |
| #endif
 | |
|     return value;
 | |
| }
 | |
| 
 | |
| FORCE_INLINE void _sse2neon_set_fpcr(uint64_t value)
 | |
| {
 | |
| #if defined(_MSC_VER)
 | |
|     _WriteStatusReg(ARM64_FPCR, value);
 | |
| #else
 | |
|     __asm__ __volatile__("msr FPCR, %0" ::"r"(value));  /* write */
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // Macro: Get the flush zero bits from the MXCSR control and status register.
 | |
| // The flush zero may contain any of the following flags: _MM_FLUSH_ZERO_ON or
 | |
| // _MM_FLUSH_ZERO_OFF
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_MM_GET_FLUSH_ZERO_MODE
 | |
| FORCE_INLINE unsigned int _sse2neon_mm_get_flush_zero_mode(void)
 | |
| {
 | |
|     union {
 | |
|         fpcr_bitfield field;
 | |
| #if defined(__aarch64__) || defined(_M_ARM64)
 | |
|         uint64_t value;
 | |
| #else
 | |
|         uint32_t value;
 | |
| #endif
 | |
|     } r;
 | |
| 
 | |
| #if defined(__aarch64__) || defined(_M_ARM64)
 | |
|     r.value = _sse2neon_get_fpcr();
 | |
| #else
 | |
|     __asm__ __volatile__("vmrs %0, FPSCR" : "=r"(r.value)); /* read */
 | |
| #endif
 | |
| 
 | |
|     return r.field.bit24 ? _MM_FLUSH_ZERO_ON : _MM_FLUSH_ZERO_OFF;
 | |
| }
 | |
| 
 | |
| // Macro: Get the rounding mode bits from the MXCSR control and status register.
 | |
| // The rounding mode may contain any of the following flags: _MM_ROUND_NEAREST,
 | |
| // _MM_ROUND_DOWN, _MM_ROUND_UP, _MM_ROUND_TOWARD_ZERO
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_MM_GET_ROUNDING_MODE
 | |
| FORCE_INLINE unsigned int _MM_GET_ROUNDING_MODE(void)
 | |
| {
 | |
|     union {
 | |
|         fpcr_bitfield field;
 | |
| #if defined(__aarch64__) || defined(_M_ARM64)
 | |
|         uint64_t value;
 | |
| #else
 | |
|         uint32_t value;
 | |
| #endif
 | |
|     } r;
 | |
| 
 | |
| #if defined(__aarch64__) || defined(_M_ARM64)
 | |
|     r.value = _sse2neon_get_fpcr();
 | |
| #else
 | |
|     __asm__ __volatile__("vmrs %0, FPSCR" : "=r"(r.value)); /* read */
 | |
| #endif
 | |
| 
 | |
|     if (r.field.bit22) {
 | |
|         return r.field.bit23 ? _MM_ROUND_TOWARD_ZERO : _MM_ROUND_UP;
 | |
|     } else {
 | |
|         return r.field.bit23 ? _MM_ROUND_DOWN : _MM_ROUND_NEAREST;
 | |
|     }
 | |
| }
 | |
| 
 | |
| // Copy a to dst, and insert the 16-bit integer i into dst at the location
 | |
| // specified by imm8.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_insert_pi16
 | |
| #define _mm_insert_pi16(a, b, imm) \
 | |
|     vreinterpret_m64_s16(vset_lane_s16((b), vreinterpret_s16_m64(a), (imm)))
 | |
| 
 | |
| // Load 128-bits (composed of 4 packed single-precision (32-bit) floating-point
 | |
| // elements) from memory into dst. mem_addr must be aligned on a 16-byte
 | |
| // boundary or a general-protection exception may be generated.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_load_ps
 | |
| FORCE_INLINE __m128 _mm_load_ps(const float *p)
 | |
| {
 | |
|     return vreinterpretq_m128_f32(vld1q_f32(p));
 | |
| }
 | |
| 
 | |
| // Load a single-precision (32-bit) floating-point element from memory into all
 | |
| // elements of dst.
 | |
| //
 | |
| //   dst[31:0] := MEM[mem_addr+31:mem_addr]
 | |
| //   dst[63:32] := MEM[mem_addr+31:mem_addr]
 | |
| //   dst[95:64] := MEM[mem_addr+31:mem_addr]
 | |
| //   dst[127:96] := MEM[mem_addr+31:mem_addr]
 | |
| //
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_load_ps1
 | |
| #define _mm_load_ps1 _mm_load1_ps
 | |
| 
 | |
| // Load a single-precision (32-bit) floating-point element from memory into the
 | |
| // lower of dst, and zero the upper 3 elements. mem_addr does not need to be
 | |
| // aligned on any particular boundary.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_load_ss
 | |
| FORCE_INLINE __m128 _mm_load_ss(const float *p)
 | |
| {
 | |
|     return vreinterpretq_m128_f32(vsetq_lane_f32(*p, vdupq_n_f32(0), 0));
 | |
| }
 | |
| 
 | |
| // Load a single-precision (32-bit) floating-point element from memory into all
 | |
| // elements of dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_load1_ps
 | |
| FORCE_INLINE __m128 _mm_load1_ps(const float *p)
 | |
| {
 | |
|     return vreinterpretq_m128_f32(vld1q_dup_f32(p));
 | |
| }
 | |
| 
 | |
| // Load 2 single-precision (32-bit) floating-point elements from memory into the
 | |
| // upper 2 elements of dst, and copy the lower 2 elements from a to dst.
 | |
| // mem_addr does not need to be aligned on any particular boundary.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_loadh_pi
 | |
| FORCE_INLINE __m128 _mm_loadh_pi(__m128 a, __m64 const *p)
 | |
| {
 | |
|     return vreinterpretq_m128_f32(
 | |
|         vcombine_f32(vget_low_f32(a), vld1_f32((const float32_t *) p)));
 | |
| }
 | |
| 
 | |
| // Load 2 single-precision (32-bit) floating-point elements from memory into the
 | |
| // lower 2 elements of dst, and copy the upper 2 elements from a to dst.
 | |
| // mem_addr does not need to be aligned on any particular boundary.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_loadl_pi
 | |
| FORCE_INLINE __m128 _mm_loadl_pi(__m128 a, __m64 const *p)
 | |
| {
 | |
|     return vreinterpretq_m128_f32(
 | |
|         vcombine_f32(vld1_f32((const float32_t *) p), vget_high_f32(a)));
 | |
| }
 | |
| 
 | |
| // Load 4 single-precision (32-bit) floating-point elements from memory into dst
 | |
| // in reverse order. mem_addr must be aligned on a 16-byte boundary or a
 | |
| // general-protection exception may be generated.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_loadr_ps
 | |
| FORCE_INLINE __m128 _mm_loadr_ps(const float *p)
 | |
| {
 | |
|     float32x4_t v = vrev64q_f32(vld1q_f32(p));
 | |
|     return vreinterpretq_m128_f32(vextq_f32(v, v, 2));
 | |
| }
 | |
| 
 | |
| // Load 128-bits (composed of 4 packed single-precision (32-bit) floating-point
 | |
| // elements) from memory into dst. mem_addr does not need to be aligned on any
 | |
| // particular boundary.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_loadu_ps
 | |
| FORCE_INLINE __m128 _mm_loadu_ps(const float *p)
 | |
| {
 | |
|     // for neon, alignment doesn't matter, so _mm_load_ps and _mm_loadu_ps are
 | |
|     // equivalent for neon
 | |
|     return vreinterpretq_m128_f32(vld1q_f32(p));
 | |
| }
 | |
| 
 | |
| // Load unaligned 16-bit integer from memory into the first element of dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_loadu_si16
 | |
| FORCE_INLINE __m128i _mm_loadu_si16(const void *p)
 | |
| {
 | |
|     return vreinterpretq_m128i_s16(
 | |
|         vsetq_lane_s16(*(const int16_t *) p, vdupq_n_s16(0), 0));
 | |
| }
 | |
| 
 | |
| // Load unaligned 64-bit integer from memory into the first element of dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_loadu_si64
 | |
| FORCE_INLINE __m128i _mm_loadu_si64(const void *p)
 | |
| {
 | |
|     return vreinterpretq_m128i_s64(
 | |
|         vcombine_s64(vld1_s64((const int64_t *) p), vdup_n_s64(0)));
 | |
| }
 | |
| 
 | |
| // Allocate size bytes of memory, aligned to the alignment specified in align,
 | |
| // and return a pointer to the allocated memory. _mm_free should be used to free
 | |
| // memory that is allocated with _mm_malloc.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_malloc
 | |
| #if !defined(SSE2NEON_ALLOC_DEFINED)
 | |
| FORCE_INLINE void *_mm_malloc(size_t size, size_t align)
 | |
| {
 | |
|     void *ptr;
 | |
|     if (align == 1)
 | |
|         return malloc(size);
 | |
|     if (align == 2 || (sizeof(void *) == 8 && align == 4))
 | |
|         align = sizeof(void *);
 | |
|     if (!posix_memalign(&ptr, align, size))
 | |
|         return ptr;
 | |
|     return NULL;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| // Conditionally store 8-bit integer elements from a into memory using mask
 | |
| // (elements are not stored when the highest bit is not set in the corresponding
 | |
| // element) and a non-temporal memory hint.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_maskmove_si64
 | |
| FORCE_INLINE void _mm_maskmove_si64(__m64 a, __m64 mask, char *mem_addr)
 | |
| {
 | |
|     int8x8_t shr_mask = vshr_n_s8(vreinterpret_s8_m64(mask), 7);
 | |
|     __m128 b = _mm_load_ps((const float *) mem_addr);
 | |
|     int8x8_t masked =
 | |
|         vbsl_s8(vreinterpret_u8_s8(shr_mask), vreinterpret_s8_m64(a),
 | |
|                 vreinterpret_s8_u64(vget_low_u64(vreinterpretq_u64_m128(b))));
 | |
|     vst1_s8((int8_t *) mem_addr, masked);
 | |
| }
 | |
| 
 | |
| // Conditionally store 8-bit integer elements from a into memory using mask
 | |
| // (elements are not stored when the highest bit is not set in the corresponding
 | |
| // element) and a non-temporal memory hint.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_m_maskmovq
 | |
| #define _m_maskmovq(a, mask, mem_addr) _mm_maskmove_si64(a, mask, mem_addr)
 | |
| 
 | |
| // Compare packed signed 16-bit integers in a and b, and store packed maximum
 | |
| // values in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_max_pi16
 | |
| FORCE_INLINE __m64 _mm_max_pi16(__m64 a, __m64 b)
 | |
| {
 | |
|     return vreinterpret_m64_s16(
 | |
|         vmax_s16(vreinterpret_s16_m64(a), vreinterpret_s16_m64(b)));
 | |
| }
 | |
| 
 | |
| // Compare packed single-precision (32-bit) floating-point elements in a and b,
 | |
| // and store packed maximum values in dst. dst does not follow the IEEE Standard
 | |
| // for Floating-Point Arithmetic (IEEE 754) maximum value when inputs are NaN or
 | |
| // signed-zero values.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_max_ps
 | |
| FORCE_INLINE __m128 _mm_max_ps(__m128 a, __m128 b)
 | |
| {
 | |
| #if SSE2NEON_PRECISE_MINMAX
 | |
|     float32x4_t _a = vreinterpretq_f32_m128(a);
 | |
|     float32x4_t _b = vreinterpretq_f32_m128(b);
 | |
|     return vreinterpretq_m128_f32(vbslq_f32(vcgtq_f32(_a, _b), _a, _b));
 | |
| #else
 | |
|     return vreinterpretq_m128_f32(
 | |
|         vmaxq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // Compare packed unsigned 8-bit integers in a and b, and store packed maximum
 | |
| // values in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_max_pu8
 | |
| FORCE_INLINE __m64 _mm_max_pu8(__m64 a, __m64 b)
 | |
| {
 | |
|     return vreinterpret_m64_u8(
 | |
|         vmax_u8(vreinterpret_u8_m64(a), vreinterpret_u8_m64(b)));
 | |
| }
 | |
| 
 | |
| // Compare the lower single-precision (32-bit) floating-point elements in a and
 | |
| // b, store the maximum value in the lower element of dst, and copy the upper 3
 | |
| // packed elements from a to the upper element of dst. dst does not follow the
 | |
| // IEEE Standard for Floating-Point Arithmetic (IEEE 754) maximum value when
 | |
| // inputs are NaN or signed-zero values.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_max_ss
 | |
| FORCE_INLINE __m128 _mm_max_ss(__m128 a, __m128 b)
 | |
| {
 | |
|     float32_t value = vgetq_lane_f32(_mm_max_ps(a, b), 0);
 | |
|     return vreinterpretq_m128_f32(
 | |
|         vsetq_lane_f32(value, vreinterpretq_f32_m128(a), 0));
 | |
| }
 | |
| 
 | |
| // Compare packed signed 16-bit integers in a and b, and store packed minimum
 | |
| // values in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_min_pi16
 | |
| FORCE_INLINE __m64 _mm_min_pi16(__m64 a, __m64 b)
 | |
| {
 | |
|     return vreinterpret_m64_s16(
 | |
|         vmin_s16(vreinterpret_s16_m64(a), vreinterpret_s16_m64(b)));
 | |
| }
 | |
| 
 | |
| // Compare packed single-precision (32-bit) floating-point elements in a and b,
 | |
| // and store packed minimum values in dst. dst does not follow the IEEE Standard
 | |
| // for Floating-Point Arithmetic (IEEE 754) minimum value when inputs are NaN or
 | |
| // signed-zero values.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_min_ps
 | |
| FORCE_INLINE __m128 _mm_min_ps(__m128 a, __m128 b)
 | |
| {
 | |
| #if SSE2NEON_PRECISE_MINMAX
 | |
|     float32x4_t _a = vreinterpretq_f32_m128(a);
 | |
|     float32x4_t _b = vreinterpretq_f32_m128(b);
 | |
|     return vreinterpretq_m128_f32(vbslq_f32(vcltq_f32(_a, _b), _a, _b));
 | |
| #else
 | |
|     return vreinterpretq_m128_f32(
 | |
|         vminq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // Compare packed unsigned 8-bit integers in a and b, and store packed minimum
 | |
| // values in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_min_pu8
 | |
| FORCE_INLINE __m64 _mm_min_pu8(__m64 a, __m64 b)
 | |
| {
 | |
|     return vreinterpret_m64_u8(
 | |
|         vmin_u8(vreinterpret_u8_m64(a), vreinterpret_u8_m64(b)));
 | |
| }
 | |
| 
 | |
| // Compare the lower single-precision (32-bit) floating-point elements in a and
 | |
| // b, store the minimum value in the lower element of dst, and copy the upper 3
 | |
| // packed elements from a to the upper element of dst. dst does not follow the
 | |
| // IEEE Standard for Floating-Point Arithmetic (IEEE 754) minimum value when
 | |
| // inputs are NaN or signed-zero values.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_min_ss
 | |
| FORCE_INLINE __m128 _mm_min_ss(__m128 a, __m128 b)
 | |
| {
 | |
|     float32_t value = vgetq_lane_f32(_mm_min_ps(a, b), 0);
 | |
|     return vreinterpretq_m128_f32(
 | |
|         vsetq_lane_f32(value, vreinterpretq_f32_m128(a), 0));
 | |
| }
 | |
| 
 | |
| // Move the lower single-precision (32-bit) floating-point element from b to the
 | |
| // lower element of dst, and copy the upper 3 packed elements from a to the
 | |
| // upper elements of dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_move_ss
 | |
| FORCE_INLINE __m128 _mm_move_ss(__m128 a, __m128 b)
 | |
| {
 | |
|     return vreinterpretq_m128_f32(
 | |
|         vsetq_lane_f32(vgetq_lane_f32(vreinterpretq_f32_m128(b), 0),
 | |
|                        vreinterpretq_f32_m128(a), 0));
 | |
| }
 | |
| 
 | |
| // Move the upper 2 single-precision (32-bit) floating-point elements from b to
 | |
| // the lower 2 elements of dst, and copy the upper 2 elements from a to the
 | |
| // upper 2 elements of dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_movehl_ps
 | |
| FORCE_INLINE __m128 _mm_movehl_ps(__m128 a, __m128 b)
 | |
| {
 | |
| #if defined(aarch64__)
 | |
|     return vreinterpretq_m128_u64(
 | |
|         vzip2q_u64(vreinterpretq_u64_m128(b), vreinterpretq_u64_m128(a)));
 | |
| #else
 | |
|     float32x2_t a32 = vget_high_f32(vreinterpretq_f32_m128(a));
 | |
|     float32x2_t b32 = vget_high_f32(vreinterpretq_f32_m128(b));
 | |
|     return vreinterpretq_m128_f32(vcombine_f32(b32, a32));
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // Move the lower 2 single-precision (32-bit) floating-point elements from b to
 | |
| // the upper 2 elements of dst, and copy the lower 2 elements from a to the
 | |
| // lower 2 elements of dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_movelh_ps
 | |
| FORCE_INLINE __m128 _mm_movelh_ps(__m128 __A, __m128 __B)
 | |
| {
 | |
|     float32x2_t a10 = vget_low_f32(vreinterpretq_f32_m128(__A));
 | |
|     float32x2_t b10 = vget_low_f32(vreinterpretq_f32_m128(__B));
 | |
|     return vreinterpretq_m128_f32(vcombine_f32(a10, b10));
 | |
| }
 | |
| 
 | |
| // Create mask from the most significant bit of each 8-bit element in a, and
 | |
| // store the result in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_movemask_pi8
 | |
| FORCE_INLINE int _mm_movemask_pi8(__m64 a)
 | |
| {
 | |
|     uint8x8_t input = vreinterpret_u8_m64(a);
 | |
| #if defined(__aarch64__) || defined(_M_ARM64)
 | |
|     static const int8_t shift[8] = {0, 1, 2, 3, 4, 5, 6, 7};
 | |
|     uint8x8_t tmp = vshr_n_u8(input, 7);
 | |
|     return vaddv_u8(vshl_u8(tmp, vld1_s8(shift)));
 | |
| #else
 | |
|     // Refer the implementation of `_mm_movemask_epi8`
 | |
|     uint16x4_t high_bits = vreinterpret_u16_u8(vshr_n_u8(input, 7));
 | |
|     uint32x2_t paired16 =
 | |
|         vreinterpret_u32_u16(vsra_n_u16(high_bits, high_bits, 7));
 | |
|     uint8x8_t paired32 =
 | |
|         vreinterpret_u8_u32(vsra_n_u32(paired16, paired16, 14));
 | |
|     return vget_lane_u8(paired32, 0) | ((int) vget_lane_u8(paired32, 4) << 4);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // Set each bit of mask dst based on the most significant bit of the
 | |
| // corresponding packed single-precision (32-bit) floating-point element in a.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_movemask_ps
 | |
| FORCE_INLINE int _mm_movemask_ps(__m128 a)
 | |
| {
 | |
|     uint32x4_t input = vreinterpretq_u32_m128(a);
 | |
| #if defined(__aarch64__) || defined(_M_ARM64)
 | |
|     static const int32_t shift[4] = {0, 1, 2, 3};
 | |
|     uint32x4_t tmp = vshrq_n_u32(input, 31);
 | |
|     return vaddvq_u32(vshlq_u32(tmp, vld1q_s32(shift)));
 | |
| #else
 | |
|     // Uses the exact same method as _mm_movemask_epi8, see that for details.
 | |
|     // Shift out everything but the sign bits with a 32-bit unsigned shift
 | |
|     // right.
 | |
|     uint64x2_t high_bits = vreinterpretq_u64_u32(vshrq_n_u32(input, 31));
 | |
|     // Merge the two pairs together with a 64-bit unsigned shift right + add.
 | |
|     uint8x16_t paired =
 | |
|         vreinterpretq_u8_u64(vsraq_n_u64(high_bits, high_bits, 31));
 | |
|     // Extract the result.
 | |
|     return vgetq_lane_u8(paired, 0) | (vgetq_lane_u8(paired, 8) << 2);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // Multiply packed single-precision (32-bit) floating-point elements in a and b,
 | |
| // and store the results in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mul_ps
 | |
| FORCE_INLINE __m128 _mm_mul_ps(__m128 a, __m128 b)
 | |
| {
 | |
|     return vreinterpretq_m128_f32(
 | |
|         vmulq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
 | |
| }
 | |
| 
 | |
| // Multiply the lower single-precision (32-bit) floating-point element in a and
 | |
| // b, store the result in the lower element of dst, and copy the upper 3 packed
 | |
| // elements from a to the upper elements of dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mul_ss
 | |
| FORCE_INLINE __m128 _mm_mul_ss(__m128 a, __m128 b)
 | |
| {
 | |
|     return _mm_move_ss(a, _mm_mul_ps(a, b));
 | |
| }
 | |
| 
 | |
| // Multiply the packed unsigned 16-bit integers in a and b, producing
 | |
| // intermediate 32-bit integers, and store the high 16 bits of the intermediate
 | |
| // integers in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mulhi_pu16
 | |
| FORCE_INLINE __m64 _mm_mulhi_pu16(__m64 a, __m64 b)
 | |
| {
 | |
|     return vreinterpret_m64_u16(vshrn_n_u32(
 | |
|         vmull_u16(vreinterpret_u16_m64(a), vreinterpret_u16_m64(b)), 16));
 | |
| }
 | |
| 
 | |
| // Compute the bitwise OR of packed single-precision (32-bit) floating-point
 | |
| // elements in a and b, and store the results in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_or_ps
 | |
| FORCE_INLINE __m128 _mm_or_ps(__m128 a, __m128 b)
 | |
| {
 | |
|     return vreinterpretq_m128_s32(
 | |
|         vorrq_s32(vreinterpretq_s32_m128(a), vreinterpretq_s32_m128(b)));
 | |
| }
 | |
| 
 | |
| // Average packed unsigned 8-bit integers in a and b, and store the results in
 | |
| // dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_m_pavgb
 | |
| #define _m_pavgb(a, b) _mm_avg_pu8(a, b)
 | |
| 
 | |
| // Average packed unsigned 16-bit integers in a and b, and store the results in
 | |
| // dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_m_pavgw
 | |
| #define _m_pavgw(a, b) _mm_avg_pu16(a, b)
 | |
| 
 | |
| // Extract a 16-bit integer from a, selected with imm8, and store the result in
 | |
| // the lower element of dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_m_pextrw
 | |
| #define _m_pextrw(a, imm) _mm_extract_pi16(a, imm)
 | |
| 
 | |
| // Copy a to dst, and insert the 16-bit integer i into dst at the location
 | |
| // specified by imm8.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=m_pinsrw
 | |
| #define _m_pinsrw(a, i, imm) _mm_insert_pi16(a, i, imm)
 | |
| 
 | |
| // Compare packed signed 16-bit integers in a and b, and store packed maximum
 | |
| // values in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_m_pmaxsw
 | |
| #define _m_pmaxsw(a, b) _mm_max_pi16(a, b)
 | |
| 
 | |
| // Compare packed unsigned 8-bit integers in a and b, and store packed maximum
 | |
| // values in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_m_pmaxub
 | |
| #define _m_pmaxub(a, b) _mm_max_pu8(a, b)
 | |
| 
 | |
| // Compare packed signed 16-bit integers in a and b, and store packed minimum
 | |
| // values in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_m_pminsw
 | |
| #define _m_pminsw(a, b) _mm_min_pi16(a, b)
 | |
| 
 | |
| // Compare packed unsigned 8-bit integers in a and b, and store packed minimum
 | |
| // values in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_m_pminub
 | |
| #define _m_pminub(a, b) _mm_min_pu8(a, b)
 | |
| 
 | |
| // Create mask from the most significant bit of each 8-bit element in a, and
 | |
| // store the result in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_m_pmovmskb
 | |
| #define _m_pmovmskb(a) _mm_movemask_pi8(a)
 | |
| 
 | |
| // Multiply the packed unsigned 16-bit integers in a and b, producing
 | |
| // intermediate 32-bit integers, and store the high 16 bits of the intermediate
 | |
| // integers in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_m_pmulhuw
 | |
| #define _m_pmulhuw(a, b) _mm_mulhi_pu16(a, b)
 | |
| 
 | |
| // Fetch the line of data from memory that contains address p to a location in
 | |
| // the cache hierarchy specified by the locality hint i.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_prefetch
 | |
| FORCE_INLINE void _mm_prefetch(char const *p, int i)
 | |
| {
 | |
|     (void) i;
 | |
| #if defined(_MSC_VER)
 | |
|     switch (i) {
 | |
|     case _MM_HINT_NTA:
 | |
|         __prefetch2(p, 1);
 | |
|         break;
 | |
|     case _MM_HINT_T0:
 | |
|         __prefetch2(p, 0);
 | |
|         break;
 | |
|     case _MM_HINT_T1:
 | |
|         __prefetch2(p, 2);
 | |
|         break;
 | |
|     case _MM_HINT_T2:
 | |
|         __prefetch2(p, 4);
 | |
|         break;
 | |
|     }
 | |
| #else
 | |
|     switch (i) {
 | |
|     case _MM_HINT_NTA:
 | |
|         __builtin_prefetch(p, 0, 0);
 | |
|         break;
 | |
|     case _MM_HINT_T0:
 | |
|         __builtin_prefetch(p, 0, 3);
 | |
|         break;
 | |
|     case _MM_HINT_T1:
 | |
|         __builtin_prefetch(p, 0, 2);
 | |
|         break;
 | |
|     case _MM_HINT_T2:
 | |
|         __builtin_prefetch(p, 0, 1);
 | |
|         break;
 | |
|     }
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // Compute the absolute differences of packed unsigned 8-bit integers in a and
 | |
| // b, then horizontally sum each consecutive 8 differences to produce four
 | |
| // unsigned 16-bit integers, and pack these unsigned 16-bit integers in the low
 | |
| // 16 bits of dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=m_psadbw
 | |
| #define _m_psadbw(a, b) _mm_sad_pu8(a, b)
 | |
| 
 | |
| // Shuffle 16-bit integers in a using the control in imm8, and store the results
 | |
| // in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_m_pshufw
 | |
| #define _m_pshufw(a, imm) _mm_shuffle_pi16(a, imm)
 | |
| 
 | |
| // Compute the approximate reciprocal of packed single-precision (32-bit)
 | |
| // floating-point elements in a, and store the results in dst. The maximum
 | |
| // relative error for this approximation is less than 1.5*2^-12.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_rcp_ps
 | |
| FORCE_INLINE __m128 _mm_rcp_ps(__m128 in)
 | |
| {
 | |
|     float32x4_t recip = vrecpeq_f32(vreinterpretq_f32_m128(in));
 | |
|     recip = vmulq_f32(recip, vrecpsq_f32(recip, vreinterpretq_f32_m128(in)));
 | |
| #if SSE2NEON_PRECISE_DIV
 | |
|     // Additional Netwon-Raphson iteration for accuracy
 | |
|     recip = vmulq_f32(recip, vrecpsq_f32(recip, vreinterpretq_f32_m128(in)));
 | |
| #endif
 | |
|     return vreinterpretq_m128_f32(recip);
 | |
| }
 | |
| 
 | |
| // Compute the approximate reciprocal of the lower single-precision (32-bit)
 | |
| // floating-point element in a, store the result in the lower element of dst,
 | |
| // and copy the upper 3 packed elements from a to the upper elements of dst. The
 | |
| // maximum relative error for this approximation is less than 1.5*2^-12.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_rcp_ss
 | |
| FORCE_INLINE __m128 _mm_rcp_ss(__m128 a)
 | |
| {
 | |
|     return _mm_move_ss(a, _mm_rcp_ps(a));
 | |
| }
 | |
| 
 | |
| // Compute the approximate reciprocal square root of packed single-precision
 | |
| // (32-bit) floating-point elements in a, and store the results in dst. The
 | |
| // maximum relative error for this approximation is less than 1.5*2^-12.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_rsqrt_ps
 | |
| FORCE_INLINE __m128 _mm_rsqrt_ps(__m128 in)
 | |
| {
 | |
|     float32x4_t out = vrsqrteq_f32(vreinterpretq_f32_m128(in));
 | |
| 
 | |
|     // Generate masks for detecting whether input has any 0.0f/-0.0f
 | |
|     // (which becomes positive/negative infinity by IEEE-754 arithmetic rules).
 | |
|     const uint32x4_t pos_inf = vdupq_n_u32(0x7F800000);
 | |
|     const uint32x4_t neg_inf = vdupq_n_u32(0xFF800000);
 | |
|     const uint32x4_t has_pos_zero =
 | |
|         vceqq_u32(pos_inf, vreinterpretq_u32_f32(out));
 | |
|     const uint32x4_t has_neg_zero =
 | |
|         vceqq_u32(neg_inf, vreinterpretq_u32_f32(out));
 | |
| 
 | |
|     out = vmulq_f32(
 | |
|         out, vrsqrtsq_f32(vmulq_f32(vreinterpretq_f32_m128(in), out), out));
 | |
| #if SSE2NEON_PRECISE_SQRT
 | |
|     // Additional Netwon-Raphson iteration for accuracy
 | |
|     out = vmulq_f32(
 | |
|         out, vrsqrtsq_f32(vmulq_f32(vreinterpretq_f32_m128(in), out), out));
 | |
| #endif
 | |
| 
 | |
|     // Set output vector element to infinity/negative-infinity if
 | |
|     // the corresponding input vector element is 0.0f/-0.0f.
 | |
|     out = vbslq_f32(has_pos_zero, (float32x4_t) pos_inf, out);
 | |
|     out = vbslq_f32(has_neg_zero, (float32x4_t) neg_inf, out);
 | |
| 
 | |
|     return vreinterpretq_m128_f32(out);
 | |
| }
 | |
| 
 | |
| // Compute the approximate reciprocal square root of the lower single-precision
 | |
| // (32-bit) floating-point element in a, store the result in the lower element
 | |
| // of dst, and copy the upper 3 packed elements from a to the upper elements of
 | |
| // dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_rsqrt_ss
 | |
| FORCE_INLINE __m128 _mm_rsqrt_ss(__m128 in)
 | |
| {
 | |
|     return vsetq_lane_f32(vgetq_lane_f32(_mm_rsqrt_ps(in), 0), in, 0);
 | |
| }
 | |
| 
 | |
| // Compute the absolute differences of packed unsigned 8-bit integers in a and
 | |
| // b, then horizontally sum each consecutive 8 differences to produce four
 | |
| // unsigned 16-bit integers, and pack these unsigned 16-bit integers in the low
 | |
| // 16 bits of dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sad_pu8
 | |
| FORCE_INLINE __m64 _mm_sad_pu8(__m64 a, __m64 b)
 | |
| {
 | |
|     uint64x1_t t = vpaddl_u32(vpaddl_u16(
 | |
|         vpaddl_u8(vabd_u8(vreinterpret_u8_m64(a), vreinterpret_u8_m64(b)))));
 | |
|     return vreinterpret_m64_u16(
 | |
|         vset_lane_u16((int) vget_lane_u64(t, 0), vdup_n_u16(0), 0));
 | |
| }
 | |
| 
 | |
| // Macro: Set the flush zero bits of the MXCSR control and status register to
 | |
| // the value in unsigned 32-bit integer a. The flush zero may contain any of the
 | |
| // following flags: _MM_FLUSH_ZERO_ON or _MM_FLUSH_ZERO_OFF
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_MM_SET_FLUSH_ZERO_MODE
 | |
| FORCE_INLINE void _sse2neon_mm_set_flush_zero_mode(unsigned int flag)
 | |
| {
 | |
|     // AArch32 Advanced SIMD arithmetic always uses the Flush-to-zero setting,
 | |
|     // regardless of the value of the FZ bit.
 | |
|     union {
 | |
|         fpcr_bitfield field;
 | |
| #if defined(__aarch64__) || defined(_M_ARM64)
 | |
|         uint64_t value;
 | |
| #else
 | |
|         uint32_t value;
 | |
| #endif
 | |
|     } r;
 | |
| 
 | |
| #if defined(__aarch64__) || defined(_M_ARM64)
 | |
|     r.value = _sse2neon_get_fpcr();
 | |
| #else
 | |
|     __asm__ __volatile__("vmrs %0, FPSCR" : "=r"(r.value)); /* read */
 | |
| #endif
 | |
| 
 | |
|     r.field.bit24 = (flag & _MM_FLUSH_ZERO_MASK) == _MM_FLUSH_ZERO_ON;
 | |
| 
 | |
| #if defined(__aarch64__) || defined(_M_ARM64)
 | |
|     _sse2neon_set_fpcr(r.value);
 | |
| #else
 | |
|     __asm__ __volatile__("vmsr FPSCR, %0" ::"r"(r));        /* write */
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // Set packed single-precision (32-bit) floating-point elements in dst with the
 | |
| // supplied values.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set_ps
 | |
| FORCE_INLINE __m128 _mm_set_ps(float w, float z, float y, float x)
 | |
| {
 | |
|     float ALIGN_STRUCT(16) data[4] = {x, y, z, w};
 | |
|     return vreinterpretq_m128_f32(vld1q_f32(data));
 | |
| }
 | |
| 
 | |
| // Broadcast single-precision (32-bit) floating-point value a to all elements of
 | |
| // dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set_ps1
 | |
| FORCE_INLINE __m128 _mm_set_ps1(float _w)
 | |
| {
 | |
|     return vreinterpretq_m128_f32(vdupq_n_f32(_w));
 | |
| }
 | |
| 
 | |
| // Macro: Set the rounding mode bits of the MXCSR control and status register to
 | |
| // the value in unsigned 32-bit integer a. The rounding mode may contain any of
 | |
| // the following flags: _MM_ROUND_NEAREST, _MM_ROUND_DOWN, _MM_ROUND_UP,
 | |
| // _MM_ROUND_TOWARD_ZERO
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_MM_SET_ROUNDING_MODE
 | |
| FORCE_INLINE void _MM_SET_ROUNDING_MODE(int rounding)
 | |
| {
 | |
|     union {
 | |
|         fpcr_bitfield field;
 | |
| #if defined(__aarch64__) || defined(_M_ARM64)
 | |
|         uint64_t value;
 | |
| #else
 | |
|         uint32_t value;
 | |
| #endif
 | |
|     } r;
 | |
| 
 | |
| #if defined(__aarch64__) || defined(_M_ARM64)
 | |
|     r.value = _sse2neon_get_fpcr();
 | |
| #else
 | |
|     __asm__ __volatile__("vmrs %0, FPSCR" : "=r"(r.value)); /* read */
 | |
| #endif
 | |
| 
 | |
|     switch (rounding) {
 | |
|     case _MM_ROUND_TOWARD_ZERO:
 | |
|         r.field.bit22 = 1;
 | |
|         r.field.bit23 = 1;
 | |
|         break;
 | |
|     case _MM_ROUND_DOWN:
 | |
|         r.field.bit22 = 0;
 | |
|         r.field.bit23 = 1;
 | |
|         break;
 | |
|     case _MM_ROUND_UP:
 | |
|         r.field.bit22 = 1;
 | |
|         r.field.bit23 = 0;
 | |
|         break;
 | |
|     default:  //_MM_ROUND_NEAREST
 | |
|         r.field.bit22 = 0;
 | |
|         r.field.bit23 = 0;
 | |
|     }
 | |
| 
 | |
| #if defined(__aarch64__) || defined(_M_ARM64)
 | |
|     _sse2neon_set_fpcr(r.value);
 | |
| #else
 | |
|     __asm__ __volatile__("vmsr FPSCR, %0" ::"r"(r));        /* write */
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // Copy single-precision (32-bit) floating-point element a to the lower element
 | |
| // of dst, and zero the upper 3 elements.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set_ss
 | |
| FORCE_INLINE __m128 _mm_set_ss(float a)
 | |
| {
 | |
|     return vreinterpretq_m128_f32(vsetq_lane_f32(a, vdupq_n_f32(0), 0));
 | |
| }
 | |
| 
 | |
| // Broadcast single-precision (32-bit) floating-point value a to all elements of
 | |
| // dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set1_ps
 | |
| FORCE_INLINE __m128 _mm_set1_ps(float _w)
 | |
| {
 | |
|     return vreinterpretq_m128_f32(vdupq_n_f32(_w));
 | |
| }
 | |
| 
 | |
| // Set the MXCSR control and status register with the value in unsigned 32-bit
 | |
| // integer a.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_setcsr
 | |
| // FIXME: _mm_setcsr() implementation supports changing the rounding mode only.
 | |
| FORCE_INLINE void _mm_setcsr(unsigned int a)
 | |
| {
 | |
|     _MM_SET_ROUNDING_MODE(a);
 | |
| }
 | |
| 
 | |
| // Get the unsigned 32-bit value of the MXCSR control and status register.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_getcsr
 | |
| // FIXME: _mm_getcsr() implementation supports reading the rounding mode only.
 | |
| FORCE_INLINE unsigned int _mm_getcsr(void)
 | |
| {
 | |
|     return _MM_GET_ROUNDING_MODE();
 | |
| }
 | |
| 
 | |
| // Set packed single-precision (32-bit) floating-point elements in dst with the
 | |
| // supplied values in reverse order.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_setr_ps
 | |
| FORCE_INLINE __m128 _mm_setr_ps(float w, float z, float y, float x)
 | |
| {
 | |
|     float ALIGN_STRUCT(16) data[4] = {w, z, y, x};
 | |
|     return vreinterpretq_m128_f32(vld1q_f32(data));
 | |
| }
 | |
| 
 | |
| // Return vector of type __m128 with all elements set to zero.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_setzero_ps
 | |
| FORCE_INLINE __m128 _mm_setzero_ps(void)
 | |
| {
 | |
|     return vreinterpretq_m128_f32(vdupq_n_f32(0));
 | |
| }
 | |
| 
 | |
| // Shuffle 16-bit integers in a using the control in imm8, and store the results
 | |
| // in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_shuffle_pi16
 | |
| #ifdef _sse2neon_shuffle
 | |
| #define _mm_shuffle_pi16(a, imm)                                       \
 | |
|     vreinterpret_m64_s16(vshuffle_s16(                                 \
 | |
|         vreinterpret_s16_m64(a), vreinterpret_s16_m64(a), (imm & 0x3), \
 | |
|         ((imm >> 2) & 0x3), ((imm >> 4) & 0x3), ((imm >> 6) & 0x3)))
 | |
| #else
 | |
| #define _mm_shuffle_pi16(a, imm)                                              \
 | |
|     _sse2neon_define1(                                                        \
 | |
|         __m64, a, int16x4_t ret;                                              \
 | |
|         ret = vmov_n_s16(                                                     \
 | |
|             vget_lane_s16(vreinterpret_s16_m64(_a), (imm) & (0x3)));          \
 | |
|         ret = vset_lane_s16(                                                  \
 | |
|             vget_lane_s16(vreinterpret_s16_m64(_a), ((imm) >> 2) & 0x3), ret, \
 | |
|             1);                                                               \
 | |
|         ret = vset_lane_s16(                                                  \
 | |
|             vget_lane_s16(vreinterpret_s16_m64(_a), ((imm) >> 4) & 0x3), ret, \
 | |
|             2);                                                               \
 | |
|         ret = vset_lane_s16(                                                  \
 | |
|             vget_lane_s16(vreinterpret_s16_m64(_a), ((imm) >> 6) & 0x3), ret, \
 | |
|             3);                                                               \
 | |
|         _sse2neon_return(vreinterpret_m64_s16(ret));)
 | |
| #endif
 | |
| 
 | |
| // Perform a serializing operation on all store-to-memory instructions that were
 | |
| // issued prior to this instruction. Guarantees that every store instruction
 | |
| // that precedes, in program order, is globally visible before any store
 | |
| // instruction which follows the fence in program order.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sfence
 | |
| FORCE_INLINE void _mm_sfence(void)
 | |
| {
 | |
|     _sse2neon_smp_mb();
 | |
| }
 | |
| 
 | |
| // Perform a serializing operation on all load-from-memory and store-to-memory
 | |
| // instructions that were issued prior to this instruction. Guarantees that
 | |
| // every memory access that precedes, in program order, the memory fence
 | |
| // instruction is globally visible before any memory instruction which follows
 | |
| // the fence in program order.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mfence
 | |
| FORCE_INLINE void _mm_mfence(void)
 | |
| {
 | |
|     _sse2neon_smp_mb();
 | |
| }
 | |
| 
 | |
| // Perform a serializing operation on all load-from-memory instructions that
 | |
| // were issued prior to this instruction. Guarantees that every load instruction
 | |
| // that precedes, in program order, is globally visible before any load
 | |
| // instruction which follows the fence in program order.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_lfence
 | |
| FORCE_INLINE void _mm_lfence(void)
 | |
| {
 | |
|     _sse2neon_smp_mb();
 | |
| }
 | |
| 
 | |
| // FORCE_INLINE __m128 _mm_shuffle_ps(__m128 a, __m128 b, __constrange(0,255)
 | |
| // int imm)
 | |
| #ifdef _sse2neon_shuffle
 | |
| #define _mm_shuffle_ps(a, b, imm)                                              \
 | |
|     __extension__({                                                            \
 | |
|         float32x4_t _input1 = vreinterpretq_f32_m128(a);                       \
 | |
|         float32x4_t _input2 = vreinterpretq_f32_m128(b);                       \
 | |
|         float32x4_t _shuf =                                                    \
 | |
|             vshuffleq_s32(_input1, _input2, (imm) & (0x3), ((imm) >> 2) & 0x3, \
 | |
|                           (((imm) >> 4) & 0x3) + 4, (((imm) >> 6) & 0x3) + 4); \
 | |
|         vreinterpretq_m128_f32(_shuf);                                         \
 | |
|     })
 | |
| #else  // generic
 | |
| #define _mm_shuffle_ps(a, b, imm)                            \
 | |
|     _sse2neon_define2(                                       \
 | |
|         __m128, a, b, __m128 ret; switch (imm) {             \
 | |
|             case _MM_SHUFFLE(1, 0, 3, 2):                    \
 | |
|                 ret = _mm_shuffle_ps_1032(_a, _b);           \
 | |
|                 break;                                       \
 | |
|             case _MM_SHUFFLE(2, 3, 0, 1):                    \
 | |
|                 ret = _mm_shuffle_ps_2301(_a, _b);           \
 | |
|                 break;                                       \
 | |
|             case _MM_SHUFFLE(0, 3, 2, 1):                    \
 | |
|                 ret = _mm_shuffle_ps_0321(_a, _b);           \
 | |
|                 break;                                       \
 | |
|             case _MM_SHUFFLE(2, 1, 0, 3):                    \
 | |
|                 ret = _mm_shuffle_ps_2103(_a, _b);           \
 | |
|                 break;                                       \
 | |
|             case _MM_SHUFFLE(1, 0, 1, 0):                    \
 | |
|                 ret = _mm_movelh_ps(_a, _b);                 \
 | |
|                 break;                                       \
 | |
|             case _MM_SHUFFLE(1, 0, 0, 1):                    \
 | |
|                 ret = _mm_shuffle_ps_1001(_a, _b);           \
 | |
|                 break;                                       \
 | |
|             case _MM_SHUFFLE(0, 1, 0, 1):                    \
 | |
|                 ret = _mm_shuffle_ps_0101(_a, _b);           \
 | |
|                 break;                                       \
 | |
|             case _MM_SHUFFLE(3, 2, 1, 0):                    \
 | |
|                 ret = _mm_shuffle_ps_3210(_a, _b);           \
 | |
|                 break;                                       \
 | |
|             case _MM_SHUFFLE(0, 0, 1, 1):                    \
 | |
|                 ret = _mm_shuffle_ps_0011(_a, _b);           \
 | |
|                 break;                                       \
 | |
|             case _MM_SHUFFLE(0, 0, 2, 2):                    \
 | |
|                 ret = _mm_shuffle_ps_0022(_a, _b);           \
 | |
|                 break;                                       \
 | |
|             case _MM_SHUFFLE(2, 2, 0, 0):                    \
 | |
|                 ret = _mm_shuffle_ps_2200(_a, _b);           \
 | |
|                 break;                                       \
 | |
|             case _MM_SHUFFLE(3, 2, 0, 2):                    \
 | |
|                 ret = _mm_shuffle_ps_3202(_a, _b);           \
 | |
|                 break;                                       \
 | |
|             case _MM_SHUFFLE(3, 2, 3, 2):                    \
 | |
|                 ret = _mm_movehl_ps(_b, _a);                 \
 | |
|                 break;                                       \
 | |
|             case _MM_SHUFFLE(1, 1, 3, 3):                    \
 | |
|                 ret = _mm_shuffle_ps_1133(_a, _b);           \
 | |
|                 break;                                       \
 | |
|             case _MM_SHUFFLE(2, 0, 1, 0):                    \
 | |
|                 ret = _mm_shuffle_ps_2010(_a, _b);           \
 | |
|                 break;                                       \
 | |
|             case _MM_SHUFFLE(2, 0, 0, 1):                    \
 | |
|                 ret = _mm_shuffle_ps_2001(_a, _b);           \
 | |
|                 break;                                       \
 | |
|             case _MM_SHUFFLE(2, 0, 3, 2):                    \
 | |
|                 ret = _mm_shuffle_ps_2032(_a, _b);           \
 | |
|                 break;                                       \
 | |
|             default:                                         \
 | |
|                 ret = _mm_shuffle_ps_default(_a, _b, (imm)); \
 | |
|                 break;                                       \
 | |
|         } _sse2neon_return(ret);)
 | |
| #endif
 | |
| 
 | |
| // Compute the square root of packed single-precision (32-bit) floating-point
 | |
| // elements in a, and store the results in dst.
 | |
| // Due to ARMv7-A NEON's lack of a precise square root intrinsic, we implement
 | |
| // square root by multiplying input in with its reciprocal square root before
 | |
| // using the Newton-Raphson method to approximate the results.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sqrt_ps
 | |
| FORCE_INLINE __m128 _mm_sqrt_ps(__m128 in)
 | |
| {
 | |
| #if (defined(__aarch64__) || defined(_M_ARM64)) && !SSE2NEON_PRECISE_SQRT
 | |
|     return vreinterpretq_m128_f32(vsqrtq_f32(vreinterpretq_f32_m128(in)));
 | |
| #else
 | |
|     float32x4_t recip = vrsqrteq_f32(vreinterpretq_f32_m128(in));
 | |
| 
 | |
|     // Test for vrsqrteq_f32(0) -> positive infinity case.
 | |
|     // Change to zero, so that s * 1/sqrt(s) result is zero too.
 | |
|     const uint32x4_t pos_inf = vdupq_n_u32(0x7F800000);
 | |
|     const uint32x4_t div_by_zero =
 | |
|         vceqq_u32(pos_inf, vreinterpretq_u32_f32(recip));
 | |
|     recip = vreinterpretq_f32_u32(
 | |
|         vandq_u32(vmvnq_u32(div_by_zero), vreinterpretq_u32_f32(recip)));
 | |
| 
 | |
|     recip = vmulq_f32(
 | |
|         vrsqrtsq_f32(vmulq_f32(recip, recip), vreinterpretq_f32_m128(in)),
 | |
|         recip);
 | |
|     // Additional Netwon-Raphson iteration for accuracy
 | |
|     recip = vmulq_f32(
 | |
|         vrsqrtsq_f32(vmulq_f32(recip, recip), vreinterpretq_f32_m128(in)),
 | |
|         recip);
 | |
| 
 | |
|     // sqrt(s) = s * 1/sqrt(s)
 | |
|     return vreinterpretq_m128_f32(vmulq_f32(vreinterpretq_f32_m128(in), recip));
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // Compute the square root of the lower single-precision (32-bit) floating-point
 | |
| // element in a, store the result in the lower element of dst, and copy the
 | |
| // upper 3 packed elements from a to the upper elements of dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sqrt_ss
 | |
| FORCE_INLINE __m128 _mm_sqrt_ss(__m128 in)
 | |
| {
 | |
|     float32_t value =
 | |
|         vgetq_lane_f32(vreinterpretq_f32_m128(_mm_sqrt_ps(in)), 0);
 | |
|     return vreinterpretq_m128_f32(
 | |
|         vsetq_lane_f32(value, vreinterpretq_f32_m128(in), 0));
 | |
| }
 | |
| 
 | |
| // Store 128-bits (composed of 4 packed single-precision (32-bit) floating-point
 | |
| // elements) from a into memory. mem_addr must be aligned on a 16-byte boundary
 | |
| // or a general-protection exception may be generated.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_store_ps
 | |
| FORCE_INLINE void _mm_store_ps(float *p, __m128 a)
 | |
| {
 | |
|     vst1q_f32(p, vreinterpretq_f32_m128(a));
 | |
| }
 | |
| 
 | |
| // Store the lower single-precision (32-bit) floating-point element from a into
 | |
| // 4 contiguous elements in memory. mem_addr must be aligned on a 16-byte
 | |
| // boundary or a general-protection exception may be generated.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_store_ps1
 | |
| FORCE_INLINE void _mm_store_ps1(float *p, __m128 a)
 | |
| {
 | |
|     float32_t a0 = vgetq_lane_f32(vreinterpretq_f32_m128(a), 0);
 | |
|     vst1q_f32(p, vdupq_n_f32(a0));
 | |
| }
 | |
| 
 | |
| // Store the lower single-precision (32-bit) floating-point element from a into
 | |
| // memory. mem_addr does not need to be aligned on any particular boundary.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_store_ss
 | |
| FORCE_INLINE void _mm_store_ss(float *p, __m128 a)
 | |
| {
 | |
|     vst1q_lane_f32(p, vreinterpretq_f32_m128(a), 0);
 | |
| }
 | |
| 
 | |
| // Store the lower single-precision (32-bit) floating-point element from a into
 | |
| // 4 contiguous elements in memory. mem_addr must be aligned on a 16-byte
 | |
| // boundary or a general-protection exception may be generated.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_store1_ps
 | |
| #define _mm_store1_ps _mm_store_ps1
 | |
| 
 | |
| // Store the upper 2 single-precision (32-bit) floating-point elements from a
 | |
| // into memory.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_storeh_pi
 | |
| FORCE_INLINE void _mm_storeh_pi(__m64 *p, __m128 a)
 | |
| {
 | |
|     *p = vreinterpret_m64_f32(vget_high_f32(a));
 | |
| }
 | |
| 
 | |
| // Store the lower 2 single-precision (32-bit) floating-point elements from a
 | |
| // into memory.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_storel_pi
 | |
| FORCE_INLINE void _mm_storel_pi(__m64 *p, __m128 a)
 | |
| {
 | |
|     *p = vreinterpret_m64_f32(vget_low_f32(a));
 | |
| }
 | |
| 
 | |
| // Store 4 single-precision (32-bit) floating-point elements from a into memory
 | |
| // in reverse order. mem_addr must be aligned on a 16-byte boundary or a
 | |
| // general-protection exception may be generated.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_storer_ps
 | |
| FORCE_INLINE void _mm_storer_ps(float *p, __m128 a)
 | |
| {
 | |
|     float32x4_t tmp = vrev64q_f32(vreinterpretq_f32_m128(a));
 | |
|     float32x4_t rev = vextq_f32(tmp, tmp, 2);
 | |
|     vst1q_f32(p, rev);
 | |
| }
 | |
| 
 | |
| // Store 128-bits (composed of 4 packed single-precision (32-bit) floating-point
 | |
| // elements) from a into memory. mem_addr does not need to be aligned on any
 | |
| // particular boundary.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_storeu_ps
 | |
| FORCE_INLINE void _mm_storeu_ps(float *p, __m128 a)
 | |
| {
 | |
|     vst1q_f32(p, vreinterpretq_f32_m128(a));
 | |
| }
 | |
| 
 | |
| // Stores 16-bits of integer data a at the address p.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_storeu_si16
 | |
| FORCE_INLINE void _mm_storeu_si16(void *p, __m128i a)
 | |
| {
 | |
|     vst1q_lane_s16((int16_t *) p, vreinterpretq_s16_m128i(a), 0);
 | |
| }
 | |
| 
 | |
| // Stores 64-bits of integer data a at the address p.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_storeu_si64
 | |
| FORCE_INLINE void _mm_storeu_si64(void *p, __m128i a)
 | |
| {
 | |
|     vst1q_lane_s64((int64_t *) p, vreinterpretq_s64_m128i(a), 0);
 | |
| }
 | |
| 
 | |
| // Store 64-bits of integer data from a into memory using a non-temporal memory
 | |
| // hint.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_stream_pi
 | |
| FORCE_INLINE void _mm_stream_pi(__m64 *p, __m64 a)
 | |
| {
 | |
|     vst1_s64((int64_t *) p, vreinterpret_s64_m64(a));
 | |
| }
 | |
| 
 | |
| // Store 128-bits (composed of 4 packed single-precision (32-bit) floating-
 | |
| // point elements) from a into memory using a non-temporal memory hint.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_stream_ps
 | |
| FORCE_INLINE void _mm_stream_ps(float *p, __m128 a)
 | |
| {
 | |
| #if __has_builtin(__builtin_nontemporal_store)
 | |
|     __builtin_nontemporal_store(a, (float32x4_t *) p);
 | |
| #else
 | |
|     vst1q_f32(p, vreinterpretq_f32_m128(a));
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // Subtract packed single-precision (32-bit) floating-point elements in b from
 | |
| // packed single-precision (32-bit) floating-point elements in a, and store the
 | |
| // results in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sub_ps
 | |
| FORCE_INLINE __m128 _mm_sub_ps(__m128 a, __m128 b)
 | |
| {
 | |
|     return vreinterpretq_m128_f32(
 | |
|         vsubq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
 | |
| }
 | |
| 
 | |
| // Subtract the lower single-precision (32-bit) floating-point element in b from
 | |
| // the lower single-precision (32-bit) floating-point element in a, store the
 | |
| // result in the lower element of dst, and copy the upper 3 packed elements from
 | |
| // a to the upper elements of dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sub_ss
 | |
| FORCE_INLINE __m128 _mm_sub_ss(__m128 a, __m128 b)
 | |
| {
 | |
|     return _mm_move_ss(a, _mm_sub_ps(a, b));
 | |
| }
 | |
| 
 | |
| // Macro: Transpose the 4x4 matrix formed by the 4 rows of single-precision
 | |
| // (32-bit) floating-point elements in row0, row1, row2, and row3, and store the
 | |
| // transposed matrix in these vectors (row0 now contains column 0, etc.).
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=MM_TRANSPOSE4_PS
 | |
| #define _MM_TRANSPOSE4_PS(row0, row1, row2, row3)         \
 | |
|     do {                                                  \
 | |
|         float32x4x2_t ROW01 = vtrnq_f32(row0, row1);      \
 | |
|         float32x4x2_t ROW23 = vtrnq_f32(row2, row3);      \
 | |
|         row0 = vcombine_f32(vget_low_f32(ROW01.val[0]),   \
 | |
|                             vget_low_f32(ROW23.val[0]));  \
 | |
|         row1 = vcombine_f32(vget_low_f32(ROW01.val[1]),   \
 | |
|                             vget_low_f32(ROW23.val[1]));  \
 | |
|         row2 = vcombine_f32(vget_high_f32(ROW01.val[0]),  \
 | |
|                             vget_high_f32(ROW23.val[0])); \
 | |
|         row3 = vcombine_f32(vget_high_f32(ROW01.val[1]),  \
 | |
|                             vget_high_f32(ROW23.val[1])); \
 | |
|     } while (0)
 | |
| 
 | |
| // according to the documentation, these intrinsics behave the same as the
 | |
| // non-'u' versions.  We'll just alias them here.
 | |
| #define _mm_ucomieq_ss _mm_comieq_ss
 | |
| #define _mm_ucomige_ss _mm_comige_ss
 | |
| #define _mm_ucomigt_ss _mm_comigt_ss
 | |
| #define _mm_ucomile_ss _mm_comile_ss
 | |
| #define _mm_ucomilt_ss _mm_comilt_ss
 | |
| #define _mm_ucomineq_ss _mm_comineq_ss
 | |
| 
 | |
| // Return vector of type __m128i with undefined elements.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=mm_undefined_si128
 | |
| FORCE_INLINE __m128i _mm_undefined_si128(void)
 | |
| {
 | |
| #if defined(__GNUC__) || defined(__clang__)
 | |
| #pragma GCC diagnostic push
 | |
| #pragma GCC diagnostic ignored "-Wuninitialized"
 | |
| #endif
 | |
|     __m128i a;
 | |
| #if defined(_MSC_VER)
 | |
|     a = _mm_setzero_si128();
 | |
| #endif
 | |
|     return a;
 | |
| #if defined(__GNUC__) || defined(__clang__)
 | |
| #pragma GCC diagnostic pop
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // Return vector of type __m128 with undefined elements.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_undefined_ps
 | |
| FORCE_INLINE __m128 _mm_undefined_ps(void)
 | |
| {
 | |
| #if defined(__GNUC__) || defined(__clang__)
 | |
| #pragma GCC diagnostic push
 | |
| #pragma GCC diagnostic ignored "-Wuninitialized"
 | |
| #endif
 | |
|     __m128 a;
 | |
| #if defined(_MSC_VER)
 | |
|     a = _mm_setzero_ps();
 | |
| #endif
 | |
|     return a;
 | |
| #if defined(__GNUC__) || defined(__clang__)
 | |
| #pragma GCC diagnostic pop
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // Unpack and interleave single-precision (32-bit) floating-point elements from
 | |
| // the high half a and b, and store the results in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_unpackhi_ps
 | |
| FORCE_INLINE __m128 _mm_unpackhi_ps(__m128 a, __m128 b)
 | |
| {
 | |
| #if defined(__aarch64__) || defined(_M_ARM64)
 | |
|     return vreinterpretq_m128_f32(
 | |
|         vzip2q_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
 | |
| #else
 | |
|     float32x2_t a1 = vget_high_f32(vreinterpretq_f32_m128(a));
 | |
|     float32x2_t b1 = vget_high_f32(vreinterpretq_f32_m128(b));
 | |
|     float32x2x2_t result = vzip_f32(a1, b1);
 | |
|     return vreinterpretq_m128_f32(vcombine_f32(result.val[0], result.val[1]));
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // Unpack and interleave single-precision (32-bit) floating-point elements from
 | |
| // the low half of a and b, and store the results in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_unpacklo_ps
 | |
| FORCE_INLINE __m128 _mm_unpacklo_ps(__m128 a, __m128 b)
 | |
| {
 | |
| #if defined(__aarch64__) || defined(_M_ARM64)
 | |
|     return vreinterpretq_m128_f32(
 | |
|         vzip1q_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
 | |
| #else
 | |
|     float32x2_t a1 = vget_low_f32(vreinterpretq_f32_m128(a));
 | |
|     float32x2_t b1 = vget_low_f32(vreinterpretq_f32_m128(b));
 | |
|     float32x2x2_t result = vzip_f32(a1, b1);
 | |
|     return vreinterpretq_m128_f32(vcombine_f32(result.val[0], result.val[1]));
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // Compute the bitwise XOR of packed single-precision (32-bit) floating-point
 | |
| // elements in a and b, and store the results in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_xor_ps
 | |
| FORCE_INLINE __m128 _mm_xor_ps(__m128 a, __m128 b)
 | |
| {
 | |
|     return vreinterpretq_m128_s32(
 | |
|         veorq_s32(vreinterpretq_s32_m128(a), vreinterpretq_s32_m128(b)));
 | |
| }
 | |
| 
 | |
| /* SSE2 */
 | |
| 
 | |
| // Add packed 16-bit integers in a and b, and store the results in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_add_epi16
 | |
| FORCE_INLINE __m128i _mm_add_epi16(__m128i a, __m128i b)
 | |
| {
 | |
|     return vreinterpretq_m128i_s16(
 | |
|         vaddq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b)));
 | |
| }
 | |
| 
 | |
| // Add packed 32-bit integers in a and b, and store the results in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_add_epi32
 | |
| FORCE_INLINE __m128i _mm_add_epi32(__m128i a, __m128i b)
 | |
| {
 | |
|     return vreinterpretq_m128i_s32(
 | |
|         vaddq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b)));
 | |
| }
 | |
| 
 | |
| // Add packed 64-bit integers in a and b, and store the results in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_add_epi64
 | |
| FORCE_INLINE __m128i _mm_add_epi64(__m128i a, __m128i b)
 | |
| {
 | |
|     return vreinterpretq_m128i_s64(
 | |
|         vaddq_s64(vreinterpretq_s64_m128i(a), vreinterpretq_s64_m128i(b)));
 | |
| }
 | |
| 
 | |
| // Add packed 8-bit integers in a and b, and store the results in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_add_epi8
 | |
| FORCE_INLINE __m128i _mm_add_epi8(__m128i a, __m128i b)
 | |
| {
 | |
|     return vreinterpretq_m128i_s8(
 | |
|         vaddq_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b)));
 | |
| }
 | |
| 
 | |
| // Add packed double-precision (64-bit) floating-point elements in a and b, and
 | |
| // store the results in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_add_pd
 | |
| FORCE_INLINE __m128d _mm_add_pd(__m128d a, __m128d b)
 | |
| {
 | |
| #if defined(__aarch64__) || defined(_M_ARM64)
 | |
|     return vreinterpretq_m128d_f64(
 | |
|         vaddq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)));
 | |
| #else
 | |
|     double *da = (double *) &a;
 | |
|     double *db = (double *) &b;
 | |
|     double c[2];
 | |
|     c[0] = da[0] + db[0];
 | |
|     c[1] = da[1] + db[1];
 | |
|     return vld1q_f32((float32_t *) c);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // Add the lower double-precision (64-bit) floating-point element in a and b,
 | |
| // store the result in the lower element of dst, and copy the upper element from
 | |
| // a to the upper element of dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_add_sd
 | |
| FORCE_INLINE __m128d _mm_add_sd(__m128d a, __m128d b)
 | |
| {
 | |
| #if defined(__aarch64__) || defined(_M_ARM64)
 | |
|     return _mm_move_sd(a, _mm_add_pd(a, b));
 | |
| #else
 | |
|     double *da = (double *) &a;
 | |
|     double *db = (double *) &b;
 | |
|     double c[2];
 | |
|     c[0] = da[0] + db[0];
 | |
|     c[1] = da[1];
 | |
|     return vld1q_f32((float32_t *) c);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // Add 64-bit integers a and b, and store the result in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_add_si64
 | |
| FORCE_INLINE __m64 _mm_add_si64(__m64 a, __m64 b)
 | |
| {
 | |
|     return vreinterpret_m64_s64(
 | |
|         vadd_s64(vreinterpret_s64_m64(a), vreinterpret_s64_m64(b)));
 | |
| }
 | |
| 
 | |
| // Add packed signed 16-bit integers in a and b using saturation, and store the
 | |
| // results in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_adds_epi16
 | |
| FORCE_INLINE __m128i _mm_adds_epi16(__m128i a, __m128i b)
 | |
| {
 | |
|     return vreinterpretq_m128i_s16(
 | |
|         vqaddq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b)));
 | |
| }
 | |
| 
 | |
| // Add packed signed 8-bit integers in a and b using saturation, and store the
 | |
| // results in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_adds_epi8
 | |
| FORCE_INLINE __m128i _mm_adds_epi8(__m128i a, __m128i b)
 | |
| {
 | |
|     return vreinterpretq_m128i_s8(
 | |
|         vqaddq_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b)));
 | |
| }
 | |
| 
 | |
| // Add packed unsigned 16-bit integers in a and b using saturation, and store
 | |
| // the results in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_adds_epu16
 | |
| FORCE_INLINE __m128i _mm_adds_epu16(__m128i a, __m128i b)
 | |
| {
 | |
|     return vreinterpretq_m128i_u16(
 | |
|         vqaddq_u16(vreinterpretq_u16_m128i(a), vreinterpretq_u16_m128i(b)));
 | |
| }
 | |
| 
 | |
| // Add packed unsigned 8-bit integers in a and b using saturation, and store the
 | |
| // results in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_adds_epu8
 | |
| FORCE_INLINE __m128i _mm_adds_epu8(__m128i a, __m128i b)
 | |
| {
 | |
|     return vreinterpretq_m128i_u8(
 | |
|         vqaddq_u8(vreinterpretq_u8_m128i(a), vreinterpretq_u8_m128i(b)));
 | |
| }
 | |
| 
 | |
| // Compute the bitwise AND of packed double-precision (64-bit) floating-point
 | |
| // elements in a and b, and store the results in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_and_pd
 | |
| FORCE_INLINE __m128d _mm_and_pd(__m128d a, __m128d b)
 | |
| {
 | |
|     return vreinterpretq_m128d_s64(
 | |
|         vandq_s64(vreinterpretq_s64_m128d(a), vreinterpretq_s64_m128d(b)));
 | |
| }
 | |
| 
 | |
| // Compute the bitwise AND of 128 bits (representing integer data) in a and b,
 | |
| // and store the result in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_and_si128
 | |
| FORCE_INLINE __m128i _mm_and_si128(__m128i a, __m128i b)
 | |
| {
 | |
|     return vreinterpretq_m128i_s32(
 | |
|         vandq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b)));
 | |
| }
 | |
| 
 | |
| // Compute the bitwise NOT of packed double-precision (64-bit) floating-point
 | |
| // elements in a and then AND with b, and store the results in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_andnot_pd
 | |
| FORCE_INLINE __m128d _mm_andnot_pd(__m128d a, __m128d b)
 | |
| {
 | |
|     // *NOTE* argument swap
 | |
|     return vreinterpretq_m128d_s64(
 | |
|         vbicq_s64(vreinterpretq_s64_m128d(b), vreinterpretq_s64_m128d(a)));
 | |
| }
 | |
| 
 | |
| // Compute the bitwise NOT of 128 bits (representing integer data) in a and then
 | |
| // AND with b, and store the result in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_andnot_si128
 | |
| FORCE_INLINE __m128i _mm_andnot_si128(__m128i a, __m128i b)
 | |
| {
 | |
|     return vreinterpretq_m128i_s32(
 | |
|         vbicq_s32(vreinterpretq_s32_m128i(b),
 | |
|                   vreinterpretq_s32_m128i(a)));  // *NOTE* argument swap
 | |
| }
 | |
| 
 | |
| // Average packed unsigned 16-bit integers in a and b, and store the results in
 | |
| // dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_avg_epu16
 | |
| FORCE_INLINE __m128i _mm_avg_epu16(__m128i a, __m128i b)
 | |
| {
 | |
|     return (__m128i) vrhaddq_u16(vreinterpretq_u16_m128i(a),
 | |
|                                  vreinterpretq_u16_m128i(b));
 | |
| }
 | |
| 
 | |
| // Average packed unsigned 8-bit integers in a and b, and store the results in
 | |
| // dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_avg_epu8
 | |
| FORCE_INLINE __m128i _mm_avg_epu8(__m128i a, __m128i b)
 | |
| {
 | |
|     return vreinterpretq_m128i_u8(
 | |
|         vrhaddq_u8(vreinterpretq_u8_m128i(a), vreinterpretq_u8_m128i(b)));
 | |
| }
 | |
| 
 | |
| // Shift a left by imm8 bytes while shifting in zeros, and store the results in
 | |
| // dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_bslli_si128
 | |
| #define _mm_bslli_si128(a, imm) _mm_slli_si128(a, imm)
 | |
| 
 | |
| // Shift a right by imm8 bytes while shifting in zeros, and store the results in
 | |
| // dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_bsrli_si128
 | |
| #define _mm_bsrli_si128(a, imm) _mm_srli_si128(a, imm)
 | |
| 
 | |
| // Cast vector of type __m128d to type __m128. This intrinsic is only used for
 | |
| // compilation and does not generate any instructions, thus it has zero latency.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_castpd_ps
 | |
| FORCE_INLINE __m128 _mm_castpd_ps(__m128d a)
 | |
| {
 | |
|     return vreinterpretq_m128_s64(vreinterpretq_s64_m128d(a));
 | |
| }
 | |
| 
 | |
| // Cast vector of type __m128d to type __m128i. This intrinsic is only used for
 | |
| // compilation and does not generate any instructions, thus it has zero latency.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_castpd_si128
 | |
| FORCE_INLINE __m128i _mm_castpd_si128(__m128d a)
 | |
| {
 | |
|     return vreinterpretq_m128i_s64(vreinterpretq_s64_m128d(a));
 | |
| }
 | |
| 
 | |
| // Cast vector of type __m128 to type __m128d. This intrinsic is only used for
 | |
| // compilation and does not generate any instructions, thus it has zero latency.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_castps_pd
 | |
| FORCE_INLINE __m128d _mm_castps_pd(__m128 a)
 | |
| {
 | |
|     return vreinterpretq_m128d_s32(vreinterpretq_s32_m128(a));
 | |
| }
 | |
| 
 | |
| // Cast vector of type __m128 to type __m128i. This intrinsic is only used for
 | |
| // compilation and does not generate any instructions, thus it has zero latency.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_castps_si128
 | |
| FORCE_INLINE __m128i _mm_castps_si128(__m128 a)
 | |
| {
 | |
|     return vreinterpretq_m128i_s32(vreinterpretq_s32_m128(a));
 | |
| }
 | |
| 
 | |
| // Cast vector of type __m128i to type __m128d. This intrinsic is only used for
 | |
| // compilation and does not generate any instructions, thus it has zero latency.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_castsi128_pd
 | |
| FORCE_INLINE __m128d _mm_castsi128_pd(__m128i a)
 | |
| {
 | |
| #if defined(__aarch64__) || defined(_M_ARM64)
 | |
|     return vreinterpretq_m128d_f64(vreinterpretq_f64_m128i(a));
 | |
| #else
 | |
|     return vreinterpretq_m128d_f32(vreinterpretq_f32_m128i(a));
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // Cast vector of type __m128i to type __m128. This intrinsic is only used for
 | |
| // compilation and does not generate any instructions, thus it has zero latency.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_castsi128_ps
 | |
| FORCE_INLINE __m128 _mm_castsi128_ps(__m128i a)
 | |
| {
 | |
|     return vreinterpretq_m128_s32(vreinterpretq_s32_m128i(a));
 | |
| }
 | |
| 
 | |
| // Invalidate and flush the cache line that contains p from all levels of the
 | |
| // cache hierarchy.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_clflush
 | |
| #if defined(__APPLE__)
 | |
| #include <libkern/OSCacheControl.h>
 | |
| #endif
 | |
| FORCE_INLINE void _mm_clflush(void const *p)
 | |
| {
 | |
|     (void) p;
 | |
| 
 | |
|     /* sys_icache_invalidate is supported since macOS 10.5.
 | |
|      * However, it does not work on non-jailbroken iOS devices, although the
 | |
|      * compilation is successful.
 | |
|      */
 | |
| #if defined(__APPLE__)
 | |
|     sys_icache_invalidate((void *) (uintptr_t) p, SSE2NEON_CACHELINE_SIZE);
 | |
| #elif defined(__GNUC__) || defined(__clang__)
 | |
|     uintptr_t ptr = (uintptr_t) p;
 | |
|     __builtin___clear_cache((char *) ptr,
 | |
|                             (char *) ptr + SSE2NEON_CACHELINE_SIZE);
 | |
| #elif (_MSC_VER) && SSE2NEON_INCLUDE_WINDOWS_H
 | |
|     FlushInstructionCache(GetCurrentProcess(), p, SSE2NEON_CACHELINE_SIZE);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // Compare packed 16-bit integers in a and b for equality, and store the results
 | |
| // in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpeq_epi16
 | |
| FORCE_INLINE __m128i _mm_cmpeq_epi16(__m128i a, __m128i b)
 | |
| {
 | |
|     return vreinterpretq_m128i_u16(
 | |
|         vceqq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b)));
 | |
| }
 | |
| 
 | |
| // Compare packed 32-bit integers in a and b for equality, and store the results
 | |
| // in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpeq_epi32
 | |
| FORCE_INLINE __m128i _mm_cmpeq_epi32(__m128i a, __m128i b)
 | |
| {
 | |
|     return vreinterpretq_m128i_u32(
 | |
|         vceqq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b)));
 | |
| }
 | |
| 
 | |
| // Compare packed 8-bit integers in a and b for equality, and store the results
 | |
| // in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpeq_epi8
 | |
| FORCE_INLINE __m128i _mm_cmpeq_epi8(__m128i a, __m128i b)
 | |
| {
 | |
|     return vreinterpretq_m128i_u8(
 | |
|         vceqq_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b)));
 | |
| }
 | |
| 
 | |
| // Compare packed double-precision (64-bit) floating-point elements in a and b
 | |
| // for equality, and store the results in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpeq_pd
 | |
| FORCE_INLINE __m128d _mm_cmpeq_pd(__m128d a, __m128d b)
 | |
| {
 | |
| #if defined(__aarch64__) || defined(_M_ARM64)
 | |
|     return vreinterpretq_m128d_u64(
 | |
|         vceqq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)));
 | |
| #else
 | |
|     // (a == b) -> (a_lo == b_lo) && (a_hi == b_hi)
 | |
|     uint32x4_t cmp =
 | |
|         vceqq_u32(vreinterpretq_u32_m128d(a), vreinterpretq_u32_m128d(b));
 | |
|     uint32x4_t swapped = vrev64q_u32(cmp);
 | |
|     return vreinterpretq_m128d_u32(vandq_u32(cmp, swapped));
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // Compare the lower double-precision (64-bit) floating-point elements in a and
 | |
| // b for equality, store the result in the lower element of dst, and copy the
 | |
| // upper element from a to the upper element of dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpeq_sd
 | |
| FORCE_INLINE __m128d _mm_cmpeq_sd(__m128d a, __m128d b)
 | |
| {
 | |
|     return _mm_move_sd(a, _mm_cmpeq_pd(a, b));
 | |
| }
 | |
| 
 | |
| // Compare packed double-precision (64-bit) floating-point elements in a and b
 | |
| // for greater-than-or-equal, and store the results in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpge_pd
 | |
| FORCE_INLINE __m128d _mm_cmpge_pd(__m128d a, __m128d b)
 | |
| {
 | |
| #if defined(__aarch64__) || defined(_M_ARM64)
 | |
|     return vreinterpretq_m128d_u64(
 | |
|         vcgeq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)));
 | |
| #else
 | |
|     uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a));
 | |
|     uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a));
 | |
|     uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b));
 | |
|     uint64_t b1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(b));
 | |
|     uint64_t d[2];
 | |
|     d[0] = (*(double *) &a0) >= (*(double *) &b0) ? ~UINT64_C(0) : UINT64_C(0);
 | |
|     d[1] = (*(double *) &a1) >= (*(double *) &b1) ? ~UINT64_C(0) : UINT64_C(0);
 | |
| 
 | |
|     return vreinterpretq_m128d_u64(vld1q_u64(d));
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // Compare the lower double-precision (64-bit) floating-point elements in a and
 | |
| // b for greater-than-or-equal, store the result in the lower element of dst,
 | |
| // and copy the upper element from a to the upper element of dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpge_sd
 | |
| FORCE_INLINE __m128d _mm_cmpge_sd(__m128d a, __m128d b)
 | |
| {
 | |
| #if defined(__aarch64__) || defined(_M_ARM64)
 | |
|     return _mm_move_sd(a, _mm_cmpge_pd(a, b));
 | |
| #else
 | |
|     // expand "_mm_cmpge_pd()" to reduce unnecessary operations
 | |
|     uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a));
 | |
|     uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a));
 | |
|     uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b));
 | |
|     uint64_t d[2];
 | |
|     d[0] = (*(double *) &a0) >= (*(double *) &b0) ? ~UINT64_C(0) : UINT64_C(0);
 | |
|     d[1] = a1;
 | |
| 
 | |
|     return vreinterpretq_m128d_u64(vld1q_u64(d));
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // Compare packed signed 16-bit integers in a and b for greater-than, and store
 | |
| // the results in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpgt_epi16
 | |
| FORCE_INLINE __m128i _mm_cmpgt_epi16(__m128i a, __m128i b)
 | |
| {
 | |
|     return vreinterpretq_m128i_u16(
 | |
|         vcgtq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b)));
 | |
| }
 | |
| 
 | |
| // Compare packed signed 32-bit integers in a and b for greater-than, and store
 | |
| // the results in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpgt_epi32
 | |
| FORCE_INLINE __m128i _mm_cmpgt_epi32(__m128i a, __m128i b)
 | |
| {
 | |
|     return vreinterpretq_m128i_u32(
 | |
|         vcgtq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b)));
 | |
| }
 | |
| 
 | |
| // Compare packed signed 8-bit integers in a and b for greater-than, and store
 | |
| // the results in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpgt_epi8
 | |
| FORCE_INLINE __m128i _mm_cmpgt_epi8(__m128i a, __m128i b)
 | |
| {
 | |
|     return vreinterpretq_m128i_u8(
 | |
|         vcgtq_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b)));
 | |
| }
 | |
| 
 | |
| // Compare packed double-precision (64-bit) floating-point elements in a and b
 | |
| // for greater-than, and store the results in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpgt_pd
 | |
| FORCE_INLINE __m128d _mm_cmpgt_pd(__m128d a, __m128d b)
 | |
| {
 | |
| #if defined(__aarch64__) || defined(_M_ARM64)
 | |
|     return vreinterpretq_m128d_u64(
 | |
|         vcgtq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)));
 | |
| #else
 | |
|     uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a));
 | |
|     uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a));
 | |
|     uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b));
 | |
|     uint64_t b1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(b));
 | |
|     uint64_t d[2];
 | |
|     d[0] = (*(double *) &a0) > (*(double *) &b0) ? ~UINT64_C(0) : UINT64_C(0);
 | |
|     d[1] = (*(double *) &a1) > (*(double *) &b1) ? ~UINT64_C(0) : UINT64_C(0);
 | |
| 
 | |
|     return vreinterpretq_m128d_u64(vld1q_u64(d));
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // Compare the lower double-precision (64-bit) floating-point elements in a and
 | |
| // b for greater-than, store the result in the lower element of dst, and copy
 | |
| // the upper element from a to the upper element of dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpgt_sd
 | |
| FORCE_INLINE __m128d _mm_cmpgt_sd(__m128d a, __m128d b)
 | |
| {
 | |
| #if defined(__aarch64__) || defined(_M_ARM64)
 | |
|     return _mm_move_sd(a, _mm_cmpgt_pd(a, b));
 | |
| #else
 | |
|     // expand "_mm_cmpge_pd()" to reduce unnecessary operations
 | |
|     uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a));
 | |
|     uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a));
 | |
|     uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b));
 | |
|     uint64_t d[2];
 | |
|     d[0] = (*(double *) &a0) > (*(double *) &b0) ? ~UINT64_C(0) : UINT64_C(0);
 | |
|     d[1] = a1;
 | |
| 
 | |
|     return vreinterpretq_m128d_u64(vld1q_u64(d));
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // Compare packed double-precision (64-bit) floating-point elements in a and b
 | |
| // for less-than-or-equal, and store the results in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmple_pd
 | |
| FORCE_INLINE __m128d _mm_cmple_pd(__m128d a, __m128d b)
 | |
| {
 | |
| #if defined(__aarch64__) || defined(_M_ARM64)
 | |
|     return vreinterpretq_m128d_u64(
 | |
|         vcleq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)));
 | |
| #else
 | |
|     uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a));
 | |
|     uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a));
 | |
|     uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b));
 | |
|     uint64_t b1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(b));
 | |
|     uint64_t d[2];
 | |
|     d[0] = (*(double *) &a0) <= (*(double *) &b0) ? ~UINT64_C(0) : UINT64_C(0);
 | |
|     d[1] = (*(double *) &a1) <= (*(double *) &b1) ? ~UINT64_C(0) : UINT64_C(0);
 | |
| 
 | |
|     return vreinterpretq_m128d_u64(vld1q_u64(d));
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // Compare the lower double-precision (64-bit) floating-point elements in a and
 | |
| // b for less-than-or-equal, store the result in the lower element of dst, and
 | |
| // copy the upper element from a to the upper element of dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmple_sd
 | |
| FORCE_INLINE __m128d _mm_cmple_sd(__m128d a, __m128d b)
 | |
| {
 | |
| #if defined(__aarch64__) || defined(_M_ARM64)
 | |
|     return _mm_move_sd(a, _mm_cmple_pd(a, b));
 | |
| #else
 | |
|     // expand "_mm_cmpge_pd()" to reduce unnecessary operations
 | |
|     uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a));
 | |
|     uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a));
 | |
|     uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b));
 | |
|     uint64_t d[2];
 | |
|     d[0] = (*(double *) &a0) <= (*(double *) &b0) ? ~UINT64_C(0) : UINT64_C(0);
 | |
|     d[1] = a1;
 | |
| 
 | |
|     return vreinterpretq_m128d_u64(vld1q_u64(d));
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // Compare packed signed 16-bit integers in a and b for less-than, and store the
 | |
| // results in dst. Note: This intrinsic emits the pcmpgtw instruction with the
 | |
| // order of the operands switched.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmplt_epi16
 | |
| FORCE_INLINE __m128i _mm_cmplt_epi16(__m128i a, __m128i b)
 | |
| {
 | |
|     return vreinterpretq_m128i_u16(
 | |
|         vcltq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b)));
 | |
| }
 | |
| 
 | |
| // Compare packed signed 32-bit integers in a and b for less-than, and store the
 | |
| // results in dst. Note: This intrinsic emits the pcmpgtd instruction with the
 | |
| // order of the operands switched.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmplt_epi32
 | |
| FORCE_INLINE __m128i _mm_cmplt_epi32(__m128i a, __m128i b)
 | |
| {
 | |
|     return vreinterpretq_m128i_u32(
 | |
|         vcltq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b)));
 | |
| }
 | |
| 
 | |
| // Compare packed signed 8-bit integers in a and b for less-than, and store the
 | |
| // results in dst. Note: This intrinsic emits the pcmpgtb instruction with the
 | |
| // order of the operands switched.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmplt_epi8
 | |
| FORCE_INLINE __m128i _mm_cmplt_epi8(__m128i a, __m128i b)
 | |
| {
 | |
|     return vreinterpretq_m128i_u8(
 | |
|         vcltq_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b)));
 | |
| }
 | |
| 
 | |
| // Compare packed double-precision (64-bit) floating-point elements in a and b
 | |
| // for less-than, and store the results in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmplt_pd
 | |
| FORCE_INLINE __m128d _mm_cmplt_pd(__m128d a, __m128d b)
 | |
| {
 | |
| #if defined(__aarch64__) || defined(_M_ARM64)
 | |
|     return vreinterpretq_m128d_u64(
 | |
|         vcltq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)));
 | |
| #else
 | |
|     uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a));
 | |
|     uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a));
 | |
|     uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b));
 | |
|     uint64_t b1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(b));
 | |
|     uint64_t d[2];
 | |
|     d[0] = (*(double *) &a0) < (*(double *) &b0) ? ~UINT64_C(0) : UINT64_C(0);
 | |
|     d[1] = (*(double *) &a1) < (*(double *) &b1) ? ~UINT64_C(0) : UINT64_C(0);
 | |
| 
 | |
|     return vreinterpretq_m128d_u64(vld1q_u64(d));
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // Compare the lower double-precision (64-bit) floating-point elements in a and
 | |
| // b for less-than, store the result in the lower element of dst, and copy the
 | |
| // upper element from a to the upper element of dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmplt_sd
 | |
| FORCE_INLINE __m128d _mm_cmplt_sd(__m128d a, __m128d b)
 | |
| {
 | |
| #if defined(__aarch64__) || defined(_M_ARM64)
 | |
|     return _mm_move_sd(a, _mm_cmplt_pd(a, b));
 | |
| #else
 | |
|     uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a));
 | |
|     uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a));
 | |
|     uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b));
 | |
|     uint64_t d[2];
 | |
|     d[0] = (*(double *) &a0) < (*(double *) &b0) ? ~UINT64_C(0) : UINT64_C(0);
 | |
|     d[1] = a1;
 | |
| 
 | |
|     return vreinterpretq_m128d_u64(vld1q_u64(d));
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // Compare packed double-precision (64-bit) floating-point elements in a and b
 | |
| // for not-equal, and store the results in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpneq_pd
 | |
| FORCE_INLINE __m128d _mm_cmpneq_pd(__m128d a, __m128d b)
 | |
| {
 | |
| #if defined(__aarch64__) || defined(_M_ARM64)
 | |
|     return vreinterpretq_m128d_s32(vmvnq_s32(vreinterpretq_s32_u64(
 | |
|         vceqq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)))));
 | |
| #else
 | |
|     // (a == b) -> (a_lo == b_lo) && (a_hi == b_hi)
 | |
|     uint32x4_t cmp =
 | |
|         vceqq_u32(vreinterpretq_u32_m128d(a), vreinterpretq_u32_m128d(b));
 | |
|     uint32x4_t swapped = vrev64q_u32(cmp);
 | |
|     return vreinterpretq_m128d_u32(vmvnq_u32(vandq_u32(cmp, swapped)));
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // Compare the lower double-precision (64-bit) floating-point elements in a and
 | |
| // b for not-equal, store the result in the lower element of dst, and copy the
 | |
| // upper element from a to the upper element of dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpneq_sd
 | |
| FORCE_INLINE __m128d _mm_cmpneq_sd(__m128d a, __m128d b)
 | |
| {
 | |
|     return _mm_move_sd(a, _mm_cmpneq_pd(a, b));
 | |
| }
 | |
| 
 | |
| // Compare packed double-precision (64-bit) floating-point elements in a and b
 | |
| // for not-greater-than-or-equal, and store the results in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpnge_pd
 | |
| FORCE_INLINE __m128d _mm_cmpnge_pd(__m128d a, __m128d b)
 | |
| {
 | |
| #if defined(__aarch64__) || defined(_M_ARM64)
 | |
|     return vreinterpretq_m128d_u64(veorq_u64(
 | |
|         vcgeq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)),
 | |
|         vdupq_n_u64(UINT64_MAX)));
 | |
| #else
 | |
|     uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a));
 | |
|     uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a));
 | |
|     uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b));
 | |
|     uint64_t b1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(b));
 | |
|     uint64_t d[2];
 | |
|     d[0] =
 | |
|         !((*(double *) &a0) >= (*(double *) &b0)) ? ~UINT64_C(0) : UINT64_C(0);
 | |
|     d[1] =
 | |
|         !((*(double *) &a1) >= (*(double *) &b1)) ? ~UINT64_C(0) : UINT64_C(0);
 | |
| 
 | |
|     return vreinterpretq_m128d_u64(vld1q_u64(d));
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // Compare the lower double-precision (64-bit) floating-point elements in a and
 | |
| // b for not-greater-than-or-equal, store the result in the lower element of
 | |
| // dst, and copy the upper element from a to the upper element of dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpnge_sd
 | |
| FORCE_INLINE __m128d _mm_cmpnge_sd(__m128d a, __m128d b)
 | |
| {
 | |
|     return _mm_move_sd(a, _mm_cmpnge_pd(a, b));
 | |
| }
 | |
| 
 | |
| // Compare packed double-precision (64-bit) floating-point elements in a and b
 | |
| // for not-greater-than, and store the results in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_cmpngt_pd
 | |
| FORCE_INLINE __m128d _mm_cmpngt_pd(__m128d a, __m128d b)
 | |
| {
 | |
| #if defined(__aarch64__) || defined(_M_ARM64)
 | |
|     return vreinterpretq_m128d_u64(veorq_u64(
 | |
|         vcgtq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)),
 | |
|         vdupq_n_u64(UINT64_MAX)));
 | |
| #else
 | |
|     uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a));
 | |
|     uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a));
 | |
|     uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b));
 | |
|     uint64_t b1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(b));
 | |
|     uint64_t d[2];
 | |
|     d[0] =
 | |
|         !((*(double *) &a0) > (*(double *) &b0)) ? ~UINT64_C(0) : UINT64_C(0);
 | |
|     d[1] =
 | |
|         !((*(double *) &a1) > (*(double *) &b1)) ? ~UINT64_C(0) : UINT64_C(0);
 | |
| 
 | |
|     return vreinterpretq_m128d_u64(vld1q_u64(d));
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // Compare the lower double-precision (64-bit) floating-point elements in a and
 | |
| // b for not-greater-than, store the result in the lower element of dst, and
 | |
| // copy the upper element from a to the upper element of dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpngt_sd
 | |
| FORCE_INLINE __m128d _mm_cmpngt_sd(__m128d a, __m128d b)
 | |
| {
 | |
|     return _mm_move_sd(a, _mm_cmpngt_pd(a, b));
 | |
| }
 | |
| 
 | |
| // Compare packed double-precision (64-bit) floating-point elements in a and b
 | |
| // for not-less-than-or-equal, and store the results in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpnle_pd
 | |
| FORCE_INLINE __m128d _mm_cmpnle_pd(__m128d a, __m128d b)
 | |
| {
 | |
| #if defined(__aarch64__) || defined(_M_ARM64)
 | |
|     return vreinterpretq_m128d_u64(veorq_u64(
 | |
|         vcleq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)),
 | |
|         vdupq_n_u64(UINT64_MAX)));
 | |
| #else
 | |
|     uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a));
 | |
|     uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a));
 | |
|     uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b));
 | |
|     uint64_t b1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(b));
 | |
|     uint64_t d[2];
 | |
|     d[0] =
 | |
|         !((*(double *) &a0) <= (*(double *) &b0)) ? ~UINT64_C(0) : UINT64_C(0);
 | |
|     d[1] =
 | |
|         !((*(double *) &a1) <= (*(double *) &b1)) ? ~UINT64_C(0) : UINT64_C(0);
 | |
| 
 | |
|     return vreinterpretq_m128d_u64(vld1q_u64(d));
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // Compare the lower double-precision (64-bit) floating-point elements in a and
 | |
| // b for not-less-than-or-equal, store the result in the lower element of dst,
 | |
| // and copy the upper element from a to the upper element of dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpnle_sd
 | |
| FORCE_INLINE __m128d _mm_cmpnle_sd(__m128d a, __m128d b)
 | |
| {
 | |
|     return _mm_move_sd(a, _mm_cmpnle_pd(a, b));
 | |
| }
 | |
| 
 | |
| // Compare packed double-precision (64-bit) floating-point elements in a and b
 | |
| // for not-less-than, and store the results in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpnlt_pd
 | |
| FORCE_INLINE __m128d _mm_cmpnlt_pd(__m128d a, __m128d b)
 | |
| {
 | |
| #if defined(__aarch64__) || defined(_M_ARM64)
 | |
|     return vreinterpretq_m128d_u64(veorq_u64(
 | |
|         vcltq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)),
 | |
|         vdupq_n_u64(UINT64_MAX)));
 | |
| #else
 | |
|     uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a));
 | |
|     uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a));
 | |
|     uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b));
 | |
|     uint64_t b1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(b));
 | |
|     uint64_t d[2];
 | |
|     d[0] =
 | |
|         !((*(double *) &a0) < (*(double *) &b0)) ? ~UINT64_C(0) : UINT64_C(0);
 | |
|     d[1] =
 | |
|         !((*(double *) &a1) < (*(double *) &b1)) ? ~UINT64_C(0) : UINT64_C(0);
 | |
| 
 | |
|     return vreinterpretq_m128d_u64(vld1q_u64(d));
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // Compare the lower double-precision (64-bit) floating-point elements in a and
 | |
| // b for not-less-than, store the result in the lower element of dst, and copy
 | |
| // the upper element from a to the upper element of dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpnlt_sd
 | |
| FORCE_INLINE __m128d _mm_cmpnlt_sd(__m128d a, __m128d b)
 | |
| {
 | |
|     return _mm_move_sd(a, _mm_cmpnlt_pd(a, b));
 | |
| }
 | |
| 
 | |
| // Compare packed double-precision (64-bit) floating-point elements in a and b
 | |
| // to see if neither is NaN, and store the results in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpord_pd
 | |
| FORCE_INLINE __m128d _mm_cmpord_pd(__m128d a, __m128d b)
 | |
| {
 | |
| #if defined(__aarch64__) || defined(_M_ARM64)
 | |
|     // Excluding NaNs, any two floating point numbers can be compared.
 | |
|     uint64x2_t not_nan_a =
 | |
|         vceqq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(a));
 | |
|     uint64x2_t not_nan_b =
 | |
|         vceqq_f64(vreinterpretq_f64_m128d(b), vreinterpretq_f64_m128d(b));
 | |
|     return vreinterpretq_m128d_u64(vandq_u64(not_nan_a, not_nan_b));
 | |
| #else
 | |
|     uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a));
 | |
|     uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a));
 | |
|     uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b));
 | |
|     uint64_t b1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(b));
 | |
|     uint64_t d[2];
 | |
|     d[0] = ((*(double *) &a0) == (*(double *) &a0) &&
 | |
|             (*(double *) &b0) == (*(double *) &b0))
 | |
|                ? ~UINT64_C(0)
 | |
|                : UINT64_C(0);
 | |
|     d[1] = ((*(double *) &a1) == (*(double *) &a1) &&
 | |
|             (*(double *) &b1) == (*(double *) &b1))
 | |
|                ? ~UINT64_C(0)
 | |
|                : UINT64_C(0);
 | |
| 
 | |
|     return vreinterpretq_m128d_u64(vld1q_u64(d));
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // Compare the lower double-precision (64-bit) floating-point elements in a and
 | |
| // b to see if neither is NaN, store the result in the lower element of dst, and
 | |
| // copy the upper element from a to the upper element of dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpord_sd
 | |
| FORCE_INLINE __m128d _mm_cmpord_sd(__m128d a, __m128d b)
 | |
| {
 | |
| #if defined(__aarch64__) || defined(_M_ARM64)
 | |
|     return _mm_move_sd(a, _mm_cmpord_pd(a, b));
 | |
| #else
 | |
|     uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a));
 | |
|     uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b));
 | |
|     uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a));
 | |
|     uint64_t d[2];
 | |
|     d[0] = ((*(double *) &a0) == (*(double *) &a0) &&
 | |
|             (*(double *) &b0) == (*(double *) &b0))
 | |
|                ? ~UINT64_C(0)
 | |
|                : UINT64_C(0);
 | |
|     d[1] = a1;
 | |
| 
 | |
|     return vreinterpretq_m128d_u64(vld1q_u64(d));
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // Compare packed double-precision (64-bit) floating-point elements in a and b
 | |
| // to see if either is NaN, and store the results in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpunord_pd
 | |
| FORCE_INLINE __m128d _mm_cmpunord_pd(__m128d a, __m128d b)
 | |
| {
 | |
| #if defined(__aarch64__) || defined(_M_ARM64)
 | |
|     // Two NaNs are not equal in comparison operation.
 | |
|     uint64x2_t not_nan_a =
 | |
|         vceqq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(a));
 | |
|     uint64x2_t not_nan_b =
 | |
|         vceqq_f64(vreinterpretq_f64_m128d(b), vreinterpretq_f64_m128d(b));
 | |
|     return vreinterpretq_m128d_s32(
 | |
|         vmvnq_s32(vreinterpretq_s32_u64(vandq_u64(not_nan_a, not_nan_b))));
 | |
| #else
 | |
|     uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a));
 | |
|     uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a));
 | |
|     uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b));
 | |
|     uint64_t b1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(b));
 | |
|     uint64_t d[2];
 | |
|     d[0] = ((*(double *) &a0) == (*(double *) &a0) &&
 | |
|             (*(double *) &b0) == (*(double *) &b0))
 | |
|                ? UINT64_C(0)
 | |
|                : ~UINT64_C(0);
 | |
|     d[1] = ((*(double *) &a1) == (*(double *) &a1) &&
 | |
|             (*(double *) &b1) == (*(double *) &b1))
 | |
|                ? UINT64_C(0)
 | |
|                : ~UINT64_C(0);
 | |
| 
 | |
|     return vreinterpretq_m128d_u64(vld1q_u64(d));
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // Compare the lower double-precision (64-bit) floating-point elements in a and
 | |
| // b to see if either is NaN, store the result in the lower element of dst, and
 | |
| // copy the upper element from a to the upper element of dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpunord_sd
 | |
| FORCE_INLINE __m128d _mm_cmpunord_sd(__m128d a, __m128d b)
 | |
| {
 | |
| #if defined(__aarch64__) || defined(_M_ARM64)
 | |
|     return _mm_move_sd(a, _mm_cmpunord_pd(a, b));
 | |
| #else
 | |
|     uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a));
 | |
|     uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b));
 | |
|     uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a));
 | |
|     uint64_t d[2];
 | |
|     d[0] = ((*(double *) &a0) == (*(double *) &a0) &&
 | |
|             (*(double *) &b0) == (*(double *) &b0))
 | |
|                ? UINT64_C(0)
 | |
|                : ~UINT64_C(0);
 | |
|     d[1] = a1;
 | |
| 
 | |
|     return vreinterpretq_m128d_u64(vld1q_u64(d));
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // Compare the lower double-precision (64-bit) floating-point element in a and b
 | |
| // for greater-than-or-equal, and return the boolean result (0 or 1).
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_comige_sd
 | |
| FORCE_INLINE int _mm_comige_sd(__m128d a, __m128d b)
 | |
| {
 | |
| #if defined(__aarch64__) || defined(_M_ARM64)
 | |
|     return vgetq_lane_u64(vcgeq_f64(a, b), 0) & 0x1;
 | |
| #else
 | |
|     uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a));
 | |
|     uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b));
 | |
| 
 | |
|     return (*(double *) &a0 >= *(double *) &b0);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // Compare the lower double-precision (64-bit) floating-point element in a and b
 | |
| // for greater-than, and return the boolean result (0 or 1).
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_comigt_sd
 | |
| FORCE_INLINE int _mm_comigt_sd(__m128d a, __m128d b)
 | |
| {
 | |
| #if defined(__aarch64__) || defined(_M_ARM64)
 | |
|     return vgetq_lane_u64(vcgtq_f64(a, b), 0) & 0x1;
 | |
| #else
 | |
|     uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a));
 | |
|     uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b));
 | |
| 
 | |
|     return (*(double *) &a0 > *(double *) &b0);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // Compare the lower double-precision (64-bit) floating-point element in a and b
 | |
| // for less-than-or-equal, and return the boolean result (0 or 1).
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_comile_sd
 | |
| FORCE_INLINE int _mm_comile_sd(__m128d a, __m128d b)
 | |
| {
 | |
| #if defined(__aarch64__) || defined(_M_ARM64)
 | |
|     return vgetq_lane_u64(vcleq_f64(a, b), 0) & 0x1;
 | |
| #else
 | |
|     uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a));
 | |
|     uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b));
 | |
| 
 | |
|     return (*(double *) &a0 <= *(double *) &b0);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // Compare the lower double-precision (64-bit) floating-point element in a and b
 | |
| // for less-than, and return the boolean result (0 or 1).
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_comilt_sd
 | |
| FORCE_INLINE int _mm_comilt_sd(__m128d a, __m128d b)
 | |
| {
 | |
| #if defined(__aarch64__) || defined(_M_ARM64)
 | |
|     return vgetq_lane_u64(vcltq_f64(a, b), 0) & 0x1;
 | |
| #else
 | |
|     uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a));
 | |
|     uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b));
 | |
| 
 | |
|     return (*(double *) &a0 < *(double *) &b0);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // Compare the lower double-precision (64-bit) floating-point element in a and b
 | |
| // for equality, and return the boolean result (0 or 1).
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_comieq_sd
 | |
| FORCE_INLINE int _mm_comieq_sd(__m128d a, __m128d b)
 | |
| {
 | |
| #if defined(__aarch64__) || defined(_M_ARM64)
 | |
|     return vgetq_lane_u64(vceqq_f64(a, b), 0) & 0x1;
 | |
| #else
 | |
|     uint32x4_t a_not_nan =
 | |
|         vceqq_u32(vreinterpretq_u32_m128d(a), vreinterpretq_u32_m128d(a));
 | |
|     uint32x4_t b_not_nan =
 | |
|         vceqq_u32(vreinterpretq_u32_m128d(b), vreinterpretq_u32_m128d(b));
 | |
|     uint32x4_t a_and_b_not_nan = vandq_u32(a_not_nan, b_not_nan);
 | |
|     uint32x4_t a_eq_b =
 | |
|         vceqq_u32(vreinterpretq_u32_m128d(a), vreinterpretq_u32_m128d(b));
 | |
|     uint64x2_t and_results = vandq_u64(vreinterpretq_u64_u32(a_and_b_not_nan),
 | |
|                                        vreinterpretq_u64_u32(a_eq_b));
 | |
|     return vgetq_lane_u64(and_results, 0) & 0x1;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // Compare the lower double-precision (64-bit) floating-point element in a and b
 | |
| // for not-equal, and return the boolean result (0 or 1).
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_comineq_sd
 | |
| FORCE_INLINE int _mm_comineq_sd(__m128d a, __m128d b)
 | |
| {
 | |
|     return !_mm_comieq_sd(a, b);
 | |
| }
 | |
| 
 | |
| // Convert packed signed 32-bit integers in a to packed double-precision
 | |
| // (64-bit) floating-point elements, and store the results in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtepi32_pd
 | |
| FORCE_INLINE __m128d _mm_cvtepi32_pd(__m128i a)
 | |
| {
 | |
| #if defined(__aarch64__) || defined(_M_ARM64)
 | |
|     return vreinterpretq_m128d_f64(
 | |
|         vcvtq_f64_s64(vmovl_s32(vget_low_s32(vreinterpretq_s32_m128i(a)))));
 | |
| #else
 | |
|     double a0 = (double) vgetq_lane_s32(vreinterpretq_s32_m128i(a), 0);
 | |
|     double a1 = (double) vgetq_lane_s32(vreinterpretq_s32_m128i(a), 1);
 | |
|     return _mm_set_pd(a1, a0);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // Convert packed signed 32-bit integers in a to packed single-precision
 | |
| // (32-bit) floating-point elements, and store the results in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtepi32_ps
 | |
| FORCE_INLINE __m128 _mm_cvtepi32_ps(__m128i a)
 | |
| {
 | |
|     return vreinterpretq_m128_f32(vcvtq_f32_s32(vreinterpretq_s32_m128i(a)));
 | |
| }
 | |
| 
 | |
| // Convert packed double-precision (64-bit) floating-point elements in a to
 | |
| // packed 32-bit integers, and store the results in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtpd_epi32
 | |
| FORCE_INLINE __m128i _mm_cvtpd_epi32(__m128d a)
 | |
| {
 | |
| // vrnd32xq_f64 not supported on clang
 | |
| #if defined(__ARM_FEATURE_FRINT) && !defined(__clang__)
 | |
|     float64x2_t rounded = vrnd32xq_f64(vreinterpretq_f64_m128d(a));
 | |
|     int64x2_t integers = vcvtq_s64_f64(rounded);
 | |
|     return vreinterpretq_m128i_s32(
 | |
|         vcombine_s32(vmovn_s64(integers), vdup_n_s32(0)));
 | |
| #else
 | |
|     __m128d rnd = _mm_round_pd(a, _MM_FROUND_CUR_DIRECTION);
 | |
|     double d0 = ((double *) &rnd)[0];
 | |
|     double d1 = ((double *) &rnd)[1];
 | |
|     return _mm_set_epi32(0, 0, (int32_t) d1, (int32_t) d0);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // Convert packed double-precision (64-bit) floating-point elements in a to
 | |
| // packed 32-bit integers, and store the results in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtpd_pi32
 | |
| FORCE_INLINE __m64 _mm_cvtpd_pi32(__m128d a)
 | |
| {
 | |
|     __m128d rnd = _mm_round_pd(a, _MM_FROUND_CUR_DIRECTION);
 | |
|     double d0 = ((double *) &rnd)[0];
 | |
|     double d1 = ((double *) &rnd)[1];
 | |
|     int32_t ALIGN_STRUCT(16) data[2] = {(int32_t) d0, (int32_t) d1};
 | |
|     return vreinterpret_m64_s32(vld1_s32(data));
 | |
| }
 | |
| 
 | |
| // Convert packed double-precision (64-bit) floating-point elements in a to
 | |
| // packed single-precision (32-bit) floating-point elements, and store the
 | |
| // results in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtpd_ps
 | |
| FORCE_INLINE __m128 _mm_cvtpd_ps(__m128d a)
 | |
| {
 | |
| #if defined(__aarch64__) || defined(_M_ARM64)
 | |
|     float32x2_t tmp = vcvt_f32_f64(vreinterpretq_f64_m128d(a));
 | |
|     return vreinterpretq_m128_f32(vcombine_f32(tmp, vdup_n_f32(0)));
 | |
| #else
 | |
|     float a0 = (float) ((double *) &a)[0];
 | |
|     float a1 = (float) ((double *) &a)[1];
 | |
|     return _mm_set_ps(0, 0, a1, a0);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // Convert packed signed 32-bit integers in a to packed double-precision
 | |
| // (64-bit) floating-point elements, and store the results in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtpi32_pd
 | |
| FORCE_INLINE __m128d _mm_cvtpi32_pd(__m64 a)
 | |
| {
 | |
| #if defined(__aarch64__) || defined(_M_ARM64)
 | |
|     return vreinterpretq_m128d_f64(
 | |
|         vcvtq_f64_s64(vmovl_s32(vreinterpret_s32_m64(a))));
 | |
| #else
 | |
|     double a0 = (double) vget_lane_s32(vreinterpret_s32_m64(a), 0);
 | |
|     double a1 = (double) vget_lane_s32(vreinterpret_s32_m64(a), 1);
 | |
|     return _mm_set_pd(a1, a0);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // Convert packed single-precision (32-bit) floating-point elements in a to
 | |
| // packed 32-bit integers, and store the results in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtps_epi32
 | |
| // *NOTE*. The default rounding mode on SSE is 'round to even', which ARMv7-A
 | |
| // does not support! It is supported on ARMv8-A however.
 | |
| FORCE_INLINE __m128i _mm_cvtps_epi32(__m128 a)
 | |
| {
 | |
| #if defined(__ARM_FEATURE_FRINT)
 | |
|     return vreinterpretq_m128i_s32(vcvtq_s32_f32(vrnd32xq_f32(a)));
 | |
| #elif (defined(__aarch64__) || defined(_M_ARM64)) || \
 | |
|     defined(__ARM_FEATURE_DIRECTED_ROUNDING)
 | |
|     switch (_MM_GET_ROUNDING_MODE()) {
 | |
|     case _MM_ROUND_NEAREST:
 | |
|         return vreinterpretq_m128i_s32(vcvtnq_s32_f32(a));
 | |
|     case _MM_ROUND_DOWN:
 | |
|         return vreinterpretq_m128i_s32(vcvtmq_s32_f32(a));
 | |
|     case _MM_ROUND_UP:
 | |
|         return vreinterpretq_m128i_s32(vcvtpq_s32_f32(a));
 | |
|     default:  // _MM_ROUND_TOWARD_ZERO
 | |
|         return vreinterpretq_m128i_s32(vcvtq_s32_f32(a));
 | |
|     }
 | |
| #else
 | |
|     float *f = (float *) &a;
 | |
|     switch (_MM_GET_ROUNDING_MODE()) {
 | |
|     case _MM_ROUND_NEAREST: {
 | |
|         uint32x4_t signmask = vdupq_n_u32(0x80000000);
 | |
|         float32x4_t half = vbslq_f32(signmask, vreinterpretq_f32_m128(a),
 | |
|                                      vdupq_n_f32(0.5f)); /* +/- 0.5 */
 | |
|         int32x4_t r_normal = vcvtq_s32_f32(vaddq_f32(
 | |
|             vreinterpretq_f32_m128(a), half)); /* round to integer: [a + 0.5]*/
 | |
|         int32x4_t r_trunc = vcvtq_s32_f32(
 | |
|             vreinterpretq_f32_m128(a)); /* truncate to integer: [a] */
 | |
|         int32x4_t plusone = vreinterpretq_s32_u32(vshrq_n_u32(
 | |
|             vreinterpretq_u32_s32(vnegq_s32(r_trunc)), 31)); /* 1 or 0 */
 | |
|         int32x4_t r_even = vbicq_s32(vaddq_s32(r_trunc, plusone),
 | |
|                                      vdupq_n_s32(1)); /* ([a] + {0,1}) & ~1 */
 | |
|         float32x4_t delta = vsubq_f32(
 | |
|             vreinterpretq_f32_m128(a),
 | |
|             vcvtq_f32_s32(r_trunc)); /* compute delta: delta = (a - [a]) */
 | |
|         uint32x4_t is_delta_half =
 | |
|             vceqq_f32(delta, half); /* delta == +/- 0.5 */
 | |
|         return vreinterpretq_m128i_s32(
 | |
|             vbslq_s32(is_delta_half, r_even, r_normal));
 | |
|     }
 | |
|     case _MM_ROUND_DOWN:
 | |
|         return _mm_set_epi32(floorf(f[3]), floorf(f[2]), floorf(f[1]),
 | |
|                              floorf(f[0]));
 | |
|     case _MM_ROUND_UP:
 | |
|         return _mm_set_epi32(ceilf(f[3]), ceilf(f[2]), ceilf(f[1]),
 | |
|                              ceilf(f[0]));
 | |
|     default:  // _MM_ROUND_TOWARD_ZERO
 | |
|         return _mm_set_epi32((int32_t) f[3], (int32_t) f[2], (int32_t) f[1],
 | |
|                              (int32_t) f[0]);
 | |
|     }
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // Convert packed single-precision (32-bit) floating-point elements in a to
 | |
| // packed double-precision (64-bit) floating-point elements, and store the
 | |
| // results in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtps_pd
 | |
| FORCE_INLINE __m128d _mm_cvtps_pd(__m128 a)
 | |
| {
 | |
| #if defined(__aarch64__) || defined(_M_ARM64)
 | |
|     return vreinterpretq_m128d_f64(
 | |
|         vcvt_f64_f32(vget_low_f32(vreinterpretq_f32_m128(a))));
 | |
| #else
 | |
|     double a0 = (double) vgetq_lane_f32(vreinterpretq_f32_m128(a), 0);
 | |
|     double a1 = (double) vgetq_lane_f32(vreinterpretq_f32_m128(a), 1);
 | |
|     return _mm_set_pd(a1, a0);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // Copy the lower double-precision (64-bit) floating-point element of a to dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsd_f64
 | |
| FORCE_INLINE double _mm_cvtsd_f64(__m128d a)
 | |
| {
 | |
| #if defined(__aarch64__) || defined(_M_ARM64)
 | |
|     return (double) vgetq_lane_f64(vreinterpretq_f64_m128d(a), 0);
 | |
| #else
 | |
|     return ((double *) &a)[0];
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // Convert the lower double-precision (64-bit) floating-point element in a to a
 | |
| // 32-bit integer, and store the result in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsd_si32
 | |
| FORCE_INLINE int32_t _mm_cvtsd_si32(__m128d a)
 | |
| {
 | |
| #if defined(__aarch64__) || defined(_M_ARM64)
 | |
|     return (int32_t) vgetq_lane_f64(vrndiq_f64(vreinterpretq_f64_m128d(a)), 0);
 | |
| #else
 | |
|     __m128d rnd = _mm_round_pd(a, _MM_FROUND_CUR_DIRECTION);
 | |
|     double ret = ((double *) &rnd)[0];
 | |
|     return (int32_t) ret;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // Convert the lower double-precision (64-bit) floating-point element in a to a
 | |
| // 64-bit integer, and store the result in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsd_si64
 | |
| FORCE_INLINE int64_t _mm_cvtsd_si64(__m128d a)
 | |
| {
 | |
| #if defined(__aarch64__) || defined(_M_ARM64)
 | |
|     return (int64_t) vgetq_lane_f64(vrndiq_f64(vreinterpretq_f64_m128d(a)), 0);
 | |
| #else
 | |
|     __m128d rnd = _mm_round_pd(a, _MM_FROUND_CUR_DIRECTION);
 | |
|     double ret = ((double *) &rnd)[0];
 | |
|     return (int64_t) ret;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // Convert the lower double-precision (64-bit) floating-point element in a to a
 | |
| // 64-bit integer, and store the result in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsd_si64x
 | |
| #define _mm_cvtsd_si64x _mm_cvtsd_si64
 | |
| 
 | |
| // Convert the lower double-precision (64-bit) floating-point element in b to a
 | |
| // single-precision (32-bit) floating-point element, store the result in the
 | |
| // lower element of dst, and copy the upper 3 packed elements from a to the
 | |
| // upper elements of dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsd_ss
 | |
| FORCE_INLINE __m128 _mm_cvtsd_ss(__m128 a, __m128d b)
 | |
| {
 | |
| #if defined(__aarch64__) || defined(_M_ARM64)
 | |
|     return vreinterpretq_m128_f32(vsetq_lane_f32(
 | |
|         vget_lane_f32(vcvt_f32_f64(vreinterpretq_f64_m128d(b)), 0),
 | |
|         vreinterpretq_f32_m128(a), 0));
 | |
| #else
 | |
|     return vreinterpretq_m128_f32(vsetq_lane_f32((float) ((double *) &b)[0],
 | |
|                                                  vreinterpretq_f32_m128(a), 0));
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // Copy the lower 32-bit integer in a to dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsi128_si32
 | |
| FORCE_INLINE int _mm_cvtsi128_si32(__m128i a)
 | |
| {
 | |
|     return vgetq_lane_s32(vreinterpretq_s32_m128i(a), 0);
 | |
| }
 | |
| 
 | |
| // Copy the lower 64-bit integer in a to dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsi128_si64
 | |
| FORCE_INLINE int64_t _mm_cvtsi128_si64(__m128i a)
 | |
| {
 | |
|     return vgetq_lane_s64(vreinterpretq_s64_m128i(a), 0);
 | |
| }
 | |
| 
 | |
| // Copy the lower 64-bit integer in a to dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsi128_si64x
 | |
| #define _mm_cvtsi128_si64x(a) _mm_cvtsi128_si64(a)
 | |
| 
 | |
| // Convert the signed 32-bit integer b to a double-precision (64-bit)
 | |
| // floating-point element, store the result in the lower element of dst, and
 | |
| // copy the upper element from a to the upper element of dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsi32_sd
 | |
| FORCE_INLINE __m128d _mm_cvtsi32_sd(__m128d a, int32_t b)
 | |
| {
 | |
| #if defined(__aarch64__) || defined(_M_ARM64)
 | |
|     return vreinterpretq_m128d_f64(
 | |
|         vsetq_lane_f64((double) b, vreinterpretq_f64_m128d(a), 0));
 | |
| #else
 | |
|     double bf = (double) b;
 | |
|     return vreinterpretq_m128d_s64(
 | |
|         vsetq_lane_s64(*(int64_t *) &bf, vreinterpretq_s64_m128d(a), 0));
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // Copy the lower 64-bit integer in a to dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsi128_si64x
 | |
| #define _mm_cvtsi128_si64x(a) _mm_cvtsi128_si64(a)
 | |
| 
 | |
| // Copy 32-bit integer a to the lower elements of dst, and zero the upper
 | |
| // elements of dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsi32_si128
 | |
| FORCE_INLINE __m128i _mm_cvtsi32_si128(int a)
 | |
| {
 | |
|     return vreinterpretq_m128i_s32(vsetq_lane_s32(a, vdupq_n_s32(0), 0));
 | |
| }
 | |
| 
 | |
| // Convert the signed 64-bit integer b to a double-precision (64-bit)
 | |
| // floating-point element, store the result in the lower element of dst, and
 | |
| // copy the upper element from a to the upper element of dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsi64_sd
 | |
| FORCE_INLINE __m128d _mm_cvtsi64_sd(__m128d a, int64_t b)
 | |
| {
 | |
| #if defined(__aarch64__) || defined(_M_ARM64)
 | |
|     return vreinterpretq_m128d_f64(
 | |
|         vsetq_lane_f64((double) b, vreinterpretq_f64_m128d(a), 0));
 | |
| #else
 | |
|     double bf = (double) b;
 | |
|     return vreinterpretq_m128d_s64(
 | |
|         vsetq_lane_s64(*(int64_t *) &bf, vreinterpretq_s64_m128d(a), 0));
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // Copy 64-bit integer a to the lower element of dst, and zero the upper
 | |
| // element.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsi64_si128
 | |
| FORCE_INLINE __m128i _mm_cvtsi64_si128(int64_t a)
 | |
| {
 | |
|     return vreinterpretq_m128i_s64(vsetq_lane_s64(a, vdupq_n_s64(0), 0));
 | |
| }
 | |
| 
 | |
| // Copy 64-bit integer a to the lower element of dst, and zero the upper
 | |
| // element.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsi64x_si128
 | |
| #define _mm_cvtsi64x_si128(a) _mm_cvtsi64_si128(a)
 | |
| 
 | |
| // Convert the signed 64-bit integer b to a double-precision (64-bit)
 | |
| // floating-point element, store the result in the lower element of dst, and
 | |
| // copy the upper element from a to the upper element of dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsi64x_sd
 | |
| #define _mm_cvtsi64x_sd(a, b) _mm_cvtsi64_sd(a, b)
 | |
| 
 | |
| // Convert the lower single-precision (32-bit) floating-point element in b to a
 | |
| // double-precision (64-bit) floating-point element, store the result in the
 | |
| // lower element of dst, and copy the upper element from a to the upper element
 | |
| // of dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtss_sd
 | |
| FORCE_INLINE __m128d _mm_cvtss_sd(__m128d a, __m128 b)
 | |
| {
 | |
|     double d = (double) vgetq_lane_f32(vreinterpretq_f32_m128(b), 0);
 | |
| #if defined(__aarch64__) || defined(_M_ARM64)
 | |
|     return vreinterpretq_m128d_f64(
 | |
|         vsetq_lane_f64(d, vreinterpretq_f64_m128d(a), 0));
 | |
| #else
 | |
|     return vreinterpretq_m128d_s64(
 | |
|         vsetq_lane_s64(*(int64_t *) &d, vreinterpretq_s64_m128d(a), 0));
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // Convert packed double-precision (64-bit) floating-point elements in a to
 | |
| // packed 32-bit integers with truncation, and store the results in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvttpd_epi32
 | |
| FORCE_INLINE __m128i _mm_cvttpd_epi32(__m128d a)
 | |
| {
 | |
|     double a0 = ((double *) &a)[0];
 | |
|     double a1 = ((double *) &a)[1];
 | |
|     return _mm_set_epi32(0, 0, (int32_t) a1, (int32_t) a0);
 | |
| }
 | |
| 
 | |
| // Convert packed double-precision (64-bit) floating-point elements in a to
 | |
| // packed 32-bit integers with truncation, and store the results in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvttpd_pi32
 | |
| FORCE_INLINE __m64 _mm_cvttpd_pi32(__m128d a)
 | |
| {
 | |
|     double a0 = ((double *) &a)[0];
 | |
|     double a1 = ((double *) &a)[1];
 | |
|     int32_t ALIGN_STRUCT(16) data[2] = {(int32_t) a0, (int32_t) a1};
 | |
|     return vreinterpret_m64_s32(vld1_s32(data));
 | |
| }
 | |
| 
 | |
| // Convert packed single-precision (32-bit) floating-point elements in a to
 | |
| // packed 32-bit integers with truncation, and store the results in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvttps_epi32
 | |
| FORCE_INLINE __m128i _mm_cvttps_epi32(__m128 a)
 | |
| {
 | |
|     return vreinterpretq_m128i_s32(vcvtq_s32_f32(vreinterpretq_f32_m128(a)));
 | |
| }
 | |
| 
 | |
| // Convert the lower double-precision (64-bit) floating-point element in a to a
 | |
| // 32-bit integer with truncation, and store the result in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvttsd_si32
 | |
| FORCE_INLINE int32_t _mm_cvttsd_si32(__m128d a)
 | |
| {
 | |
|     double ret = *((double *) &a);
 | |
|     return (int32_t) ret;
 | |
| }
 | |
| 
 | |
| // Convert the lower double-precision (64-bit) floating-point element in a to a
 | |
| // 64-bit integer with truncation, and store the result in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvttsd_si64
 | |
| FORCE_INLINE int64_t _mm_cvttsd_si64(__m128d a)
 | |
| {
 | |
| #if defined(__aarch64__) || defined(_M_ARM64)
 | |
|     return vgetq_lane_s64(vcvtq_s64_f64(vreinterpretq_f64_m128d(a)), 0);
 | |
| #else
 | |
|     double ret = *((double *) &a);
 | |
|     return (int64_t) ret;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // Convert the lower double-precision (64-bit) floating-point element in a to a
 | |
| // 64-bit integer with truncation, and store the result in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvttsd_si64x
 | |
| #define _mm_cvttsd_si64x(a) _mm_cvttsd_si64(a)
 | |
| 
 | |
| // Divide packed double-precision (64-bit) floating-point elements in a by
 | |
| // packed elements in b, and store the results in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_div_pd
 | |
| FORCE_INLINE __m128d _mm_div_pd(__m128d a, __m128d b)
 | |
| {
 | |
| #if defined(__aarch64__) || defined(_M_ARM64)
 | |
|     return vreinterpretq_m128d_f64(
 | |
|         vdivq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)));
 | |
| #else
 | |
|     double *da = (double *) &a;
 | |
|     double *db = (double *) &b;
 | |
|     double c[2];
 | |
|     c[0] = da[0] / db[0];
 | |
|     c[1] = da[1] / db[1];
 | |
|     return vld1q_f32((float32_t *) c);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // Divide the lower double-precision (64-bit) floating-point element in a by the
 | |
| // lower double-precision (64-bit) floating-point element in b, store the result
 | |
| // in the lower element of dst, and copy the upper element from a to the upper
 | |
| // element of dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_div_sd
 | |
| FORCE_INLINE __m128d _mm_div_sd(__m128d a, __m128d b)
 | |
| {
 | |
| #if defined(__aarch64__) || defined(_M_ARM64)
 | |
|     float64x2_t tmp =
 | |
|         vdivq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b));
 | |
|     return vreinterpretq_m128d_f64(
 | |
|         vsetq_lane_f64(vgetq_lane_f64(vreinterpretq_f64_m128d(a), 1), tmp, 1));
 | |
| #else
 | |
|     return _mm_move_sd(a, _mm_div_pd(a, b));
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // Extract a 16-bit integer from a, selected with imm8, and store the result in
 | |
| // the lower element of dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_extract_epi16
 | |
| // FORCE_INLINE int _mm_extract_epi16(__m128i a, __constrange(0,8) int imm)
 | |
| #define _mm_extract_epi16(a, imm) \
 | |
|     vgetq_lane_u16(vreinterpretq_u16_m128i(a), (imm))
 | |
| 
 | |
| // Copy a to dst, and insert the 16-bit integer i into dst at the location
 | |
| // specified by imm8.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_insert_epi16
 | |
| // FORCE_INLINE __m128i _mm_insert_epi16(__m128i a, int b,
 | |
| //                                       __constrange(0,8) int imm)
 | |
| #define _mm_insert_epi16(a, b, imm) \
 | |
|     vreinterpretq_m128i_s16(        \
 | |
|         vsetq_lane_s16((b), vreinterpretq_s16_m128i(a), (imm)))
 | |
| 
 | |
| // Load 128-bits (composed of 2 packed double-precision (64-bit) floating-point
 | |
| // elements) from memory into dst. mem_addr must be aligned on a 16-byte
 | |
| // boundary or a general-protection exception may be generated.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_load_pd
 | |
| FORCE_INLINE __m128d _mm_load_pd(const double *p)
 | |
| {
 | |
| #if defined(__aarch64__) || defined(_M_ARM64)
 | |
|     return vreinterpretq_m128d_f64(vld1q_f64(p));
 | |
| #else
 | |
|     const float *fp = (const float *) p;
 | |
|     float ALIGN_STRUCT(16) data[4] = {fp[0], fp[1], fp[2], fp[3]};
 | |
|     return vreinterpretq_m128d_f32(vld1q_f32(data));
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // Load a double-precision (64-bit) floating-point element from memory into both
 | |
| // elements of dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_load_pd1
 | |
| #define _mm_load_pd1 _mm_load1_pd
 | |
| 
 | |
| // Load a double-precision (64-bit) floating-point element from memory into the
 | |
| // lower of dst, and zero the upper element. mem_addr does not need to be
 | |
| // aligned on any particular boundary.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_load_sd
 | |
| FORCE_INLINE __m128d _mm_load_sd(const double *p)
 | |
| {
 | |
| #if defined(__aarch64__) || defined(_M_ARM64)
 | |
|     return vreinterpretq_m128d_f64(vsetq_lane_f64(*p, vdupq_n_f64(0), 0));
 | |
| #else
 | |
|     const float *fp = (const float *) p;
 | |
|     float ALIGN_STRUCT(16) data[4] = {fp[0], fp[1], 0, 0};
 | |
|     return vreinterpretq_m128d_f32(vld1q_f32(data));
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // Load 128-bits of integer data from memory into dst. mem_addr must be aligned
 | |
| // on a 16-byte boundary or a general-protection exception may be generated.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_load_si128
 | |
| FORCE_INLINE __m128i _mm_load_si128(const __m128i *p)
 | |
| {
 | |
|     return vreinterpretq_m128i_s32(vld1q_s32((const int32_t *) p));
 | |
| }
 | |
| 
 | |
| // Load a double-precision (64-bit) floating-point element from memory into both
 | |
| // elements of dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_load1_pd
 | |
| FORCE_INLINE __m128d _mm_load1_pd(const double *p)
 | |
| {
 | |
| #if defined(__aarch64__) || defined(_M_ARM64)
 | |
|     return vreinterpretq_m128d_f64(vld1q_dup_f64(p));
 | |
| #else
 | |
|     return vreinterpretq_m128d_s64(vdupq_n_s64(*(const int64_t *) p));
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // Load a double-precision (64-bit) floating-point element from memory into the
 | |
| // upper element of dst, and copy the lower element from a to dst. mem_addr does
 | |
| // not need to be aligned on any particular boundary.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_loadh_pd
 | |
| FORCE_INLINE __m128d _mm_loadh_pd(__m128d a, const double *p)
 | |
| {
 | |
| #if defined(__aarch64__) || defined(_M_ARM64)
 | |
|     return vreinterpretq_m128d_f64(
 | |
|         vcombine_f64(vget_low_f64(vreinterpretq_f64_m128d(a)), vld1_f64(p)));
 | |
| #else
 | |
|     return vreinterpretq_m128d_f32(vcombine_f32(
 | |
|         vget_low_f32(vreinterpretq_f32_m128d(a)), vld1_f32((const float *) p)));
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // Load 64-bit integer from memory into the first element of dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_loadl_epi64
 | |
| FORCE_INLINE __m128i _mm_loadl_epi64(__m128i const *p)
 | |
| {
 | |
|     /* Load the lower 64 bits of the value pointed to by p into the
 | |
|      * lower 64 bits of the result, zeroing the upper 64 bits of the result.
 | |
|      */
 | |
|     return vreinterpretq_m128i_s32(
 | |
|         vcombine_s32(vld1_s32((int32_t const *) p), vcreate_s32(0)));
 | |
| }
 | |
| 
 | |
| // Load a double-precision (64-bit) floating-point element from memory into the
 | |
| // lower element of dst, and copy the upper element from a to dst. mem_addr does
 | |
| // not need to be aligned on any particular boundary.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_loadl_pd
 | |
| FORCE_INLINE __m128d _mm_loadl_pd(__m128d a, const double *p)
 | |
| {
 | |
| #if defined(__aarch64__) || defined(_M_ARM64)
 | |
|     return vreinterpretq_m128d_f64(
 | |
|         vcombine_f64(vld1_f64(p), vget_high_f64(vreinterpretq_f64_m128d(a))));
 | |
| #else
 | |
|     return vreinterpretq_m128d_f32(
 | |
|         vcombine_f32(vld1_f32((const float *) p),
 | |
|                      vget_high_f32(vreinterpretq_f32_m128d(a))));
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // Load 2 double-precision (64-bit) floating-point elements from memory into dst
 | |
| // in reverse order. mem_addr must be aligned on a 16-byte boundary or a
 | |
| // general-protection exception may be generated.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_loadr_pd
 | |
| FORCE_INLINE __m128d _mm_loadr_pd(const double *p)
 | |
| {
 | |
| #if defined(__aarch64__) || defined(_M_ARM64)
 | |
|     float64x2_t v = vld1q_f64(p);
 | |
|     return vreinterpretq_m128d_f64(vextq_f64(v, v, 1));
 | |
| #else
 | |
|     int64x2_t v = vld1q_s64((const int64_t *) p);
 | |
|     return vreinterpretq_m128d_s64(vextq_s64(v, v, 1));
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // Loads two double-precision from unaligned memory, floating-point values.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_loadu_pd
 | |
| FORCE_INLINE __m128d _mm_loadu_pd(const double *p)
 | |
| {
 | |
|     return _mm_load_pd(p);
 | |
| }
 | |
| 
 | |
| // Load 128-bits of integer data from memory into dst. mem_addr does not need to
 | |
| // be aligned on any particular boundary.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_loadu_si128
 | |
| FORCE_INLINE __m128i _mm_loadu_si128(const __m128i *p)
 | |
| {
 | |
|     return vreinterpretq_m128i_s32(vld1q_s32((const int32_t *) p));
 | |
| }
 | |
| 
 | |
| // Load unaligned 32-bit integer from memory into the first element of dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_loadu_si32
 | |
| FORCE_INLINE __m128i _mm_loadu_si32(const void *p)
 | |
| {
 | |
|     return vreinterpretq_m128i_s32(
 | |
|         vsetq_lane_s32(*(const int32_t *) p, vdupq_n_s32(0), 0));
 | |
| }
 | |
| 
 | |
| // Multiply packed signed 16-bit integers in a and b, producing intermediate
 | |
| // signed 32-bit integers. Horizontally add adjacent pairs of intermediate
 | |
| // 32-bit integers, and pack the results in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_madd_epi16
 | |
| FORCE_INLINE __m128i _mm_madd_epi16(__m128i a, __m128i b)
 | |
| {
 | |
|     int32x4_t low = vmull_s16(vget_low_s16(vreinterpretq_s16_m128i(a)),
 | |
|                               vget_low_s16(vreinterpretq_s16_m128i(b)));
 | |
| #if defined(__aarch64__) || defined(_M_ARM64)
 | |
|     int32x4_t high =
 | |
|         vmull_high_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b));
 | |
| 
 | |
|     return vreinterpretq_m128i_s32(vpaddq_s32(low, high));
 | |
| #else
 | |
|     int32x4_t high = vmull_s16(vget_high_s16(vreinterpretq_s16_m128i(a)),
 | |
|                                vget_high_s16(vreinterpretq_s16_m128i(b)));
 | |
| 
 | |
|     int32x2_t low_sum = vpadd_s32(vget_low_s32(low), vget_high_s32(low));
 | |
|     int32x2_t high_sum = vpadd_s32(vget_low_s32(high), vget_high_s32(high));
 | |
| 
 | |
|     return vreinterpretq_m128i_s32(vcombine_s32(low_sum, high_sum));
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // Conditionally store 8-bit integer elements from a into memory using mask
 | |
| // (elements are not stored when the highest bit is not set in the corresponding
 | |
| // element) and a non-temporal memory hint. mem_addr does not need to be aligned
 | |
| // on any particular boundary.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_maskmoveu_si128
 | |
| FORCE_INLINE void _mm_maskmoveu_si128(__m128i a, __m128i mask, char *mem_addr)
 | |
| {
 | |
|     int8x16_t shr_mask = vshrq_n_s8(vreinterpretq_s8_m128i(mask), 7);
 | |
|     __m128 b = _mm_load_ps((const float *) mem_addr);
 | |
|     int8x16_t masked =
 | |
|         vbslq_s8(vreinterpretq_u8_s8(shr_mask), vreinterpretq_s8_m128i(a),
 | |
|                  vreinterpretq_s8_m128(b));
 | |
|     vst1q_s8((int8_t *) mem_addr, masked);
 | |
| }
 | |
| 
 | |
| // Compare packed signed 16-bit integers in a and b, and store packed maximum
 | |
| // values in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_max_epi16
 | |
| FORCE_INLINE __m128i _mm_max_epi16(__m128i a, __m128i b)
 | |
| {
 | |
|     return vreinterpretq_m128i_s16(
 | |
|         vmaxq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b)));
 | |
| }
 | |
| 
 | |
| // Compare packed unsigned 8-bit integers in a and b, and store packed maximum
 | |
| // values in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_max_epu8
 | |
| FORCE_INLINE __m128i _mm_max_epu8(__m128i a, __m128i b)
 | |
| {
 | |
|     return vreinterpretq_m128i_u8(
 | |
|         vmaxq_u8(vreinterpretq_u8_m128i(a), vreinterpretq_u8_m128i(b)));
 | |
| }
 | |
| 
 | |
| // Compare packed double-precision (64-bit) floating-point elements in a and b,
 | |
| // and store packed maximum values in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_max_pd
 | |
| FORCE_INLINE __m128d _mm_max_pd(__m128d a, __m128d b)
 | |
| {
 | |
| #if defined(__aarch64__) || defined(_M_ARM64)
 | |
| #if SSE2NEON_PRECISE_MINMAX
 | |
|     float64x2_t _a = vreinterpretq_f64_m128d(a);
 | |
|     float64x2_t _b = vreinterpretq_f64_m128d(b);
 | |
|     return vreinterpretq_m128d_f64(vbslq_f64(vcgtq_f64(_a, _b), _a, _b));
 | |
| #else
 | |
|     return vreinterpretq_m128d_f64(
 | |
|         vmaxq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)));
 | |
| #endif
 | |
| #else
 | |
|     uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a));
 | |
|     uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a));
 | |
|     uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b));
 | |
|     uint64_t b1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(b));
 | |
|     uint64_t d[2];
 | |
|     d[0] = (*(double *) &a0) > (*(double *) &b0) ? a0 : b0;
 | |
|     d[1] = (*(double *) &a1) > (*(double *) &b1) ? a1 : b1;
 | |
| 
 | |
|     return vreinterpretq_m128d_u64(vld1q_u64(d));
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // Compare the lower double-precision (64-bit) floating-point elements in a and
 | |
| // b, store the maximum value in the lower element of dst, and copy the upper
 | |
| // element from a to the upper element of dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_max_sd
 | |
| FORCE_INLINE __m128d _mm_max_sd(__m128d a, __m128d b)
 | |
| {
 | |
| #if defined(__aarch64__) || defined(_M_ARM64)
 | |
|     return _mm_move_sd(a, _mm_max_pd(a, b));
 | |
| #else
 | |
|     double *da = (double *) &a;
 | |
|     double *db = (double *) &b;
 | |
|     double c[2] = {da[0] > db[0] ? da[0] : db[0], da[1]};
 | |
|     return vreinterpretq_m128d_f32(vld1q_f32((float32_t *) c));
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // Compare packed signed 16-bit integers in a and b, and store packed minimum
 | |
| // values in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_min_epi16
 | |
| FORCE_INLINE __m128i _mm_min_epi16(__m128i a, __m128i b)
 | |
| {
 | |
|     return vreinterpretq_m128i_s16(
 | |
|         vminq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b)));
 | |
| }
 | |
| 
 | |
| // Compare packed unsigned 8-bit integers in a and b, and store packed minimum
 | |
| // values in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_min_epu8
 | |
| FORCE_INLINE __m128i _mm_min_epu8(__m128i a, __m128i b)
 | |
| {
 | |
|     return vreinterpretq_m128i_u8(
 | |
|         vminq_u8(vreinterpretq_u8_m128i(a), vreinterpretq_u8_m128i(b)));
 | |
| }
 | |
| 
 | |
| // Compare packed double-precision (64-bit) floating-point elements in a and b,
 | |
| // and store packed minimum values in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_min_pd
 | |
| FORCE_INLINE __m128d _mm_min_pd(__m128d a, __m128d b)
 | |
| {
 | |
| #if defined(__aarch64__) || defined(_M_ARM64)
 | |
| #if SSE2NEON_PRECISE_MINMAX
 | |
|     float64x2_t _a = vreinterpretq_f64_m128d(a);
 | |
|     float64x2_t _b = vreinterpretq_f64_m128d(b);
 | |
|     return vreinterpretq_m128d_f64(vbslq_f64(vcltq_f64(_a, _b), _a, _b));
 | |
| #else
 | |
|     return vreinterpretq_m128d_f64(
 | |
|         vminq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)));
 | |
| #endif
 | |
| #else
 | |
|     uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a));
 | |
|     uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a));
 | |
|     uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b));
 | |
|     uint64_t b1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(b));
 | |
|     uint64_t d[2];
 | |
|     d[0] = (*(double *) &a0) < (*(double *) &b0) ? a0 : b0;
 | |
|     d[1] = (*(double *) &a1) < (*(double *) &b1) ? a1 : b1;
 | |
|     return vreinterpretq_m128d_u64(vld1q_u64(d));
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // Compare the lower double-precision (64-bit) floating-point elements in a and
 | |
| // b, store the minimum value in the lower element of dst, and copy the upper
 | |
| // element from a to the upper element of dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_min_sd
 | |
| FORCE_INLINE __m128d _mm_min_sd(__m128d a, __m128d b)
 | |
| {
 | |
| #if defined(__aarch64__) || defined(_M_ARM64)
 | |
|     return _mm_move_sd(a, _mm_min_pd(a, b));
 | |
| #else
 | |
|     double *da = (double *) &a;
 | |
|     double *db = (double *) &b;
 | |
|     double c[2] = {da[0] < db[0] ? da[0] : db[0], da[1]};
 | |
|     return vreinterpretq_m128d_f32(vld1q_f32((float32_t *) c));
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // Copy the lower 64-bit integer in a to the lower element of dst, and zero the
 | |
| // upper element.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_move_epi64
 | |
| FORCE_INLINE __m128i _mm_move_epi64(__m128i a)
 | |
| {
 | |
|     return vreinterpretq_m128i_s64(
 | |
|         vsetq_lane_s64(0, vreinterpretq_s64_m128i(a), 1));
 | |
| }
 | |
| 
 | |
| // Move the lower double-precision (64-bit) floating-point element from b to the
 | |
| // lower element of dst, and copy the upper element from a to the upper element
 | |
| // of dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_move_sd
 | |
| FORCE_INLINE __m128d _mm_move_sd(__m128d a, __m128d b)
 | |
| {
 | |
|     return vreinterpretq_m128d_f32(
 | |
|         vcombine_f32(vget_low_f32(vreinterpretq_f32_m128d(b)),
 | |
|                      vget_high_f32(vreinterpretq_f32_m128d(a))));
 | |
| }
 | |
| 
 | |
| // Create mask from the most significant bit of each 8-bit element in a, and
 | |
| // store the result in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_movemask_epi8
 | |
| FORCE_INLINE int _mm_movemask_epi8(__m128i a)
 | |
| {
 | |
|     // Use increasingly wide shifts+adds to collect the sign bits
 | |
|     // together.
 | |
|     // Since the widening shifts would be rather confusing to follow in little
 | |
|     // endian, everything will be illustrated in big endian order instead. This
 | |
|     // has a different result - the bits would actually be reversed on a big
 | |
|     // endian machine.
 | |
| 
 | |
|     // Starting input (only half the elements are shown):
 | |
|     // 89 ff 1d c0 00 10 99 33
 | |
|     uint8x16_t input = vreinterpretq_u8_m128i(a);
 | |
| 
 | |
|     // Shift out everything but the sign bits with an unsigned shift right.
 | |
|     //
 | |
|     // Bytes of the vector::
 | |
|     // 89 ff 1d c0 00 10 99 33
 | |
|     // \  \  \  \  \  \  \  \    high_bits = (uint16x4_t)(input >> 7)
 | |
|     //  |  |  |  |  |  |  |  |
 | |
|     // 01 01 00 01 00 00 01 00
 | |
|     //
 | |
|     // Bits of first important lane(s):
 | |
|     // 10001001 (89)
 | |
|     // \______
 | |
|     //        |
 | |
|     // 00000001 (01)
 | |
|     uint16x8_t high_bits = vreinterpretq_u16_u8(vshrq_n_u8(input, 7));
 | |
| 
 | |
|     // Merge the even lanes together with a 16-bit unsigned shift right + add.
 | |
|     // 'xx' represents garbage data which will be ignored in the final result.
 | |
|     // In the important bytes, the add functions like a binary OR.
 | |
|     //
 | |
|     // 01 01 00 01 00 00 01 00
 | |
|     //  \_ |  \_ |  \_ |  \_ |   paired16 = (uint32x4_t)(input + (input >> 7))
 | |
|     //    \|    \|    \|    \|
 | |
|     // xx 03 xx 01 xx 00 xx 02
 | |
|     //
 | |
|     // 00000001 00000001 (01 01)
 | |
|     //        \_______ |
 | |
|     //                \|
 | |
|     // xxxxxxxx xxxxxx11 (xx 03)
 | |
|     uint32x4_t paired16 =
 | |
|         vreinterpretq_u32_u16(vsraq_n_u16(high_bits, high_bits, 7));
 | |
| 
 | |
|     // Repeat with a wider 32-bit shift + add.
 | |
|     // xx 03 xx 01 xx 00 xx 02
 | |
|     //     \____ |     \____ |  paired32 = (uint64x1_t)(paired16 + (paired16 >>
 | |
|     //     14))
 | |
|     //          \|          \|
 | |
|     // xx xx xx 0d xx xx xx 02
 | |
|     //
 | |
|     // 00000011 00000001 (03 01)
 | |
|     //        \\_____ ||
 | |
|     //         '----.\||
 | |
|     // xxxxxxxx xxxx1101 (xx 0d)
 | |
|     uint64x2_t paired32 =
 | |
|         vreinterpretq_u64_u32(vsraq_n_u32(paired16, paired16, 14));
 | |
| 
 | |
|     // Last, an even wider 64-bit shift + add to get our result in the low 8 bit
 | |
|     // lanes. xx xx xx 0d xx xx xx 02
 | |
|     //            \_________ |   paired64 = (uint8x8_t)(paired32 + (paired32 >>
 | |
|     //            28))
 | |
|     //                      \|
 | |
|     // xx xx xx xx xx xx xx d2
 | |
|     //
 | |
|     // 00001101 00000010 (0d 02)
 | |
|     //     \   \___ |  |
 | |
|     //      '---.  \|  |
 | |
|     // xxxxxxxx 11010010 (xx d2)
 | |
|     uint8x16_t paired64 =
 | |
|         vreinterpretq_u8_u64(vsraq_n_u64(paired32, paired32, 28));
 | |
| 
 | |
|     // Extract the low 8 bits from each 64-bit lane with 2 8-bit extracts.
 | |
|     // xx xx xx xx xx xx xx d2
 | |
|     //                      ||  return paired64[0]
 | |
|     //                      d2
 | |
|     // Note: Little endian would return the correct value 4b (01001011) instead.
 | |
|     return vgetq_lane_u8(paired64, 0) | ((int) vgetq_lane_u8(paired64, 8) << 8);
 | |
| }
 | |
| 
 | |
| // Set each bit of mask dst based on the most significant bit of the
 | |
| // corresponding packed double-precision (64-bit) floating-point element in a.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_movemask_pd
 | |
| FORCE_INLINE int _mm_movemask_pd(__m128d a)
 | |
| {
 | |
|     uint64x2_t input = vreinterpretq_u64_m128d(a);
 | |
|     uint64x2_t high_bits = vshrq_n_u64(input, 63);
 | |
|     return (int) (vgetq_lane_u64(high_bits, 0) |
 | |
|                   (vgetq_lane_u64(high_bits, 1) << 1));
 | |
| }
 | |
| 
 | |
| // Copy the lower 64-bit integer in a to dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_movepi64_pi64
 | |
| FORCE_INLINE __m64 _mm_movepi64_pi64(__m128i a)
 | |
| {
 | |
|     return vreinterpret_m64_s64(vget_low_s64(vreinterpretq_s64_m128i(a)));
 | |
| }
 | |
| 
 | |
| // Copy the 64-bit integer a to the lower element of dst, and zero the upper
 | |
| // element.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_movpi64_epi64
 | |
| FORCE_INLINE __m128i _mm_movpi64_epi64(__m64 a)
 | |
| {
 | |
|     return vreinterpretq_m128i_s64(
 | |
|         vcombine_s64(vreinterpret_s64_m64(a), vdup_n_s64(0)));
 | |
| }
 | |
| 
 | |
| // Multiply the low unsigned 32-bit integers from each packed 64-bit element in
 | |
| // a and b, and store the unsigned 64-bit results in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mul_epu32
 | |
| FORCE_INLINE __m128i _mm_mul_epu32(__m128i a, __m128i b)
 | |
| {
 | |
|     // vmull_u32 upcasts instead of masking, so we downcast.
 | |
|     uint32x2_t a_lo = vmovn_u64(vreinterpretq_u64_m128i(a));
 | |
|     uint32x2_t b_lo = vmovn_u64(vreinterpretq_u64_m128i(b));
 | |
|     return vreinterpretq_m128i_u64(vmull_u32(a_lo, b_lo));
 | |
| }
 | |
| 
 | |
| // Multiply packed double-precision (64-bit) floating-point elements in a and b,
 | |
| // and store the results in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mul_pd
 | |
| FORCE_INLINE __m128d _mm_mul_pd(__m128d a, __m128d b)
 | |
| {
 | |
| #if defined(__aarch64__) || defined(_M_ARM64)
 | |
|     return vreinterpretq_m128d_f64(
 | |
|         vmulq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)));
 | |
| #else
 | |
|     double *da = (double *) &a;
 | |
|     double *db = (double *) &b;
 | |
|     double c[2];
 | |
|     c[0] = da[0] * db[0];
 | |
|     c[1] = da[1] * db[1];
 | |
|     return vld1q_f32((float32_t *) c);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // Multiply the lower double-precision (64-bit) floating-point element in a and
 | |
| // b, store the result in the lower element of dst, and copy the upper element
 | |
| // from a to the upper element of dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=mm_mul_sd
 | |
| FORCE_INLINE __m128d _mm_mul_sd(__m128d a, __m128d b)
 | |
| {
 | |
|     return _mm_move_sd(a, _mm_mul_pd(a, b));
 | |
| }
 | |
| 
 | |
| // Multiply the low unsigned 32-bit integers from a and b, and store the
 | |
| // unsigned 64-bit result in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mul_su32
 | |
| FORCE_INLINE __m64 _mm_mul_su32(__m64 a, __m64 b)
 | |
| {
 | |
|     return vreinterpret_m64_u64(vget_low_u64(
 | |
|         vmull_u32(vreinterpret_u32_m64(a), vreinterpret_u32_m64(b))));
 | |
| }
 | |
| 
 | |
| // Multiply the packed signed 16-bit integers in a and b, producing intermediate
 | |
| // 32-bit integers, and store the high 16 bits of the intermediate integers in
 | |
| // dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mulhi_epi16
 | |
| FORCE_INLINE __m128i _mm_mulhi_epi16(__m128i a, __m128i b)
 | |
| {
 | |
|     /* FIXME: issue with large values because of result saturation */
 | |
|     // int16x8_t ret = vqdmulhq_s16(vreinterpretq_s16_m128i(a),
 | |
|     // vreinterpretq_s16_m128i(b)); /* =2*a*b */ return
 | |
|     // vreinterpretq_m128i_s16(vshrq_n_s16(ret, 1));
 | |
|     int16x4_t a3210 = vget_low_s16(vreinterpretq_s16_m128i(a));
 | |
|     int16x4_t b3210 = vget_low_s16(vreinterpretq_s16_m128i(b));
 | |
|     int32x4_t ab3210 = vmull_s16(a3210, b3210); /* 3333222211110000 */
 | |
|     int16x4_t a7654 = vget_high_s16(vreinterpretq_s16_m128i(a));
 | |
|     int16x4_t b7654 = vget_high_s16(vreinterpretq_s16_m128i(b));
 | |
|     int32x4_t ab7654 = vmull_s16(a7654, b7654); /* 7777666655554444 */
 | |
|     uint16x8x2_t r =
 | |
|         vuzpq_u16(vreinterpretq_u16_s32(ab3210), vreinterpretq_u16_s32(ab7654));
 | |
|     return vreinterpretq_m128i_u16(r.val[1]);
 | |
| }
 | |
| 
 | |
| // Multiply the packed unsigned 16-bit integers in a and b, producing
 | |
| // intermediate 32-bit integers, and store the high 16 bits of the intermediate
 | |
| // integers in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mulhi_epu16
 | |
| FORCE_INLINE __m128i _mm_mulhi_epu16(__m128i a, __m128i b)
 | |
| {
 | |
|     uint16x4_t a3210 = vget_low_u16(vreinterpretq_u16_m128i(a));
 | |
|     uint16x4_t b3210 = vget_low_u16(vreinterpretq_u16_m128i(b));
 | |
|     uint32x4_t ab3210 = vmull_u16(a3210, b3210);
 | |
| #if defined(__aarch64__) || defined(_M_ARM64)
 | |
|     uint32x4_t ab7654 =
 | |
|         vmull_high_u16(vreinterpretq_u16_m128i(a), vreinterpretq_u16_m128i(b));
 | |
|     uint16x8_t r = vuzp2q_u16(vreinterpretq_u16_u32(ab3210),
 | |
|                               vreinterpretq_u16_u32(ab7654));
 | |
|     return vreinterpretq_m128i_u16(r);
 | |
| #else
 | |
|     uint16x4_t a7654 = vget_high_u16(vreinterpretq_u16_m128i(a));
 | |
|     uint16x4_t b7654 = vget_high_u16(vreinterpretq_u16_m128i(b));
 | |
|     uint32x4_t ab7654 = vmull_u16(a7654, b7654);
 | |
|     uint16x8x2_t r =
 | |
|         vuzpq_u16(vreinterpretq_u16_u32(ab3210), vreinterpretq_u16_u32(ab7654));
 | |
|     return vreinterpretq_m128i_u16(r.val[1]);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // Multiply the packed 16-bit integers in a and b, producing intermediate 32-bit
 | |
| // integers, and store the low 16 bits of the intermediate integers in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mullo_epi16
 | |
| FORCE_INLINE __m128i _mm_mullo_epi16(__m128i a, __m128i b)
 | |
| {
 | |
|     return vreinterpretq_m128i_s16(
 | |
|         vmulq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b)));
 | |
| }
 | |
| 
 | |
| // Compute the bitwise OR of packed double-precision (64-bit) floating-point
 | |
| // elements in a and b, and store the results in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=mm_or_pd
 | |
| FORCE_INLINE __m128d _mm_or_pd(__m128d a, __m128d b)
 | |
| {
 | |
|     return vreinterpretq_m128d_s64(
 | |
|         vorrq_s64(vreinterpretq_s64_m128d(a), vreinterpretq_s64_m128d(b)));
 | |
| }
 | |
| 
 | |
| // Compute the bitwise OR of 128 bits (representing integer data) in a and b,
 | |
| // and store the result in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_or_si128
 | |
| FORCE_INLINE __m128i _mm_or_si128(__m128i a, __m128i b)
 | |
| {
 | |
|     return vreinterpretq_m128i_s32(
 | |
|         vorrq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b)));
 | |
| }
 | |
| 
 | |
| // Convert packed signed 16-bit integers from a and b to packed 8-bit integers
 | |
| // using signed saturation, and store the results in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_packs_epi16
 | |
| FORCE_INLINE __m128i _mm_packs_epi16(__m128i a, __m128i b)
 | |
| {
 | |
|     return vreinterpretq_m128i_s8(
 | |
|         vcombine_s8(vqmovn_s16(vreinterpretq_s16_m128i(a)),
 | |
|                     vqmovn_s16(vreinterpretq_s16_m128i(b))));
 | |
| }
 | |
| 
 | |
| // Convert packed signed 32-bit integers from a and b to packed 16-bit integers
 | |
| // using signed saturation, and store the results in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_packs_epi32
 | |
| FORCE_INLINE __m128i _mm_packs_epi32(__m128i a, __m128i b)
 | |
| {
 | |
|     return vreinterpretq_m128i_s16(
 | |
|         vcombine_s16(vqmovn_s32(vreinterpretq_s32_m128i(a)),
 | |
|                      vqmovn_s32(vreinterpretq_s32_m128i(b))));
 | |
| }
 | |
| 
 | |
| // Convert packed signed 16-bit integers from a and b to packed 8-bit integers
 | |
| // using unsigned saturation, and store the results in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_packus_epi16
 | |
| FORCE_INLINE __m128i _mm_packus_epi16(const __m128i a, const __m128i b)
 | |
| {
 | |
|     return vreinterpretq_m128i_u8(
 | |
|         vcombine_u8(vqmovun_s16(vreinterpretq_s16_m128i(a)),
 | |
|                     vqmovun_s16(vreinterpretq_s16_m128i(b))));
 | |
| }
 | |
| 
 | |
| // Pause the processor. This is typically used in spin-wait loops and depending
 | |
| // on the x86 processor typical values are in the 40-100 cycle range. The
 | |
| // 'yield' instruction isn't a good fit because it's effectively a nop on most
 | |
| // Arm cores. Experience with several databases has shown has shown an 'isb' is
 | |
| // a reasonable approximation.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_pause
 | |
| FORCE_INLINE void _mm_pause(void)
 | |
| {
 | |
| #if defined(_MSC_VER)
 | |
|     __isb(_ARM64_BARRIER_SY);
 | |
| #else
 | |
|     __asm__ __volatile__("isb\n");
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // Compute the absolute differences of packed unsigned 8-bit integers in a and
 | |
| // b, then horizontally sum each consecutive 8 differences to produce two
 | |
| // unsigned 16-bit integers, and pack these unsigned 16-bit integers in the low
 | |
| // 16 bits of 64-bit elements in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sad_epu8
 | |
| FORCE_INLINE __m128i _mm_sad_epu8(__m128i a, __m128i b)
 | |
| {
 | |
|     uint16x8_t t = vpaddlq_u8(vabdq_u8((uint8x16_t) a, (uint8x16_t) b));
 | |
|     return vreinterpretq_m128i_u64(vpaddlq_u32(vpaddlq_u16(t)));
 | |
| }
 | |
| 
 | |
| // Set packed 16-bit integers in dst with the supplied values.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set_epi16
 | |
| FORCE_INLINE __m128i _mm_set_epi16(short i7,
 | |
|                                    short i6,
 | |
|                                    short i5,
 | |
|                                    short i4,
 | |
|                                    short i3,
 | |
|                                    short i2,
 | |
|                                    short i1,
 | |
|                                    short i0)
 | |
| {
 | |
|     int16_t ALIGN_STRUCT(16) data[8] = {i0, i1, i2, i3, i4, i5, i6, i7};
 | |
|     return vreinterpretq_m128i_s16(vld1q_s16(data));
 | |
| }
 | |
| 
 | |
| // Set packed 32-bit integers in dst with the supplied values.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set_epi32
 | |
| FORCE_INLINE __m128i _mm_set_epi32(int i3, int i2, int i1, int i0)
 | |
| {
 | |
|     int32_t ALIGN_STRUCT(16) data[4] = {i0, i1, i2, i3};
 | |
|     return vreinterpretq_m128i_s32(vld1q_s32(data));
 | |
| }
 | |
| 
 | |
| // Set packed 64-bit integers in dst with the supplied values.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set_epi64
 | |
| FORCE_INLINE __m128i _mm_set_epi64(__m64 i1, __m64 i2)
 | |
| {
 | |
|     return _mm_set_epi64x(vget_lane_s64(i1, 0), vget_lane_s64(i2, 0));
 | |
| }
 | |
| 
 | |
| // Set packed 64-bit integers in dst with the supplied values.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set_epi64x
 | |
| FORCE_INLINE __m128i _mm_set_epi64x(int64_t i1, int64_t i2)
 | |
| {
 | |
|     return vreinterpretq_m128i_s64(
 | |
|         vcombine_s64(vcreate_s64(i2), vcreate_s64(i1)));
 | |
| }
 | |
| 
 | |
| // Set packed 8-bit integers in dst with the supplied values.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set_epi8
 | |
| FORCE_INLINE __m128i _mm_set_epi8(signed char b15,
 | |
|                                   signed char b14,
 | |
|                                   signed char b13,
 | |
|                                   signed char b12,
 | |
|                                   signed char b11,
 | |
|                                   signed char b10,
 | |
|                                   signed char b9,
 | |
|                                   signed char b8,
 | |
|                                   signed char b7,
 | |
|                                   signed char b6,
 | |
|                                   signed char b5,
 | |
|                                   signed char b4,
 | |
|                                   signed char b3,
 | |
|                                   signed char b2,
 | |
|                                   signed char b1,
 | |
|                                   signed char b0)
 | |
| {
 | |
|     int8_t ALIGN_STRUCT(16)
 | |
|         data[16] = {(int8_t) b0,  (int8_t) b1,  (int8_t) b2,  (int8_t) b3,
 | |
|                     (int8_t) b4,  (int8_t) b5,  (int8_t) b6,  (int8_t) b7,
 | |
|                     (int8_t) b8,  (int8_t) b9,  (int8_t) b10, (int8_t) b11,
 | |
|                     (int8_t) b12, (int8_t) b13, (int8_t) b14, (int8_t) b15};
 | |
|     return (__m128i) vld1q_s8(data);
 | |
| }
 | |
| 
 | |
| // Set packed double-precision (64-bit) floating-point elements in dst with the
 | |
| // supplied values.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set_pd
 | |
| FORCE_INLINE __m128d _mm_set_pd(double e1, double e0)
 | |
| {
 | |
|     double ALIGN_STRUCT(16) data[2] = {e0, e1};
 | |
| #if defined(__aarch64__) || defined(_M_ARM64)
 | |
|     return vreinterpretq_m128d_f64(vld1q_f64((float64_t *) data));
 | |
| #else
 | |
|     return vreinterpretq_m128d_f32(vld1q_f32((float32_t *) data));
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // Broadcast double-precision (64-bit) floating-point value a to all elements of
 | |
| // dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set_pd1
 | |
| #define _mm_set_pd1 _mm_set1_pd
 | |
| 
 | |
| // Copy double-precision (64-bit) floating-point element a to the lower element
 | |
| // of dst, and zero the upper element.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set_sd
 | |
| FORCE_INLINE __m128d _mm_set_sd(double a)
 | |
| {
 | |
| #if defined(__aarch64__) || defined(_M_ARM64)
 | |
|     return vreinterpretq_m128d_f64(vsetq_lane_f64(a, vdupq_n_f64(0), 0));
 | |
| #else
 | |
|     return _mm_set_pd(0, a);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // Broadcast 16-bit integer a to all elements of dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set1_epi16
 | |
| FORCE_INLINE __m128i _mm_set1_epi16(short w)
 | |
| {
 | |
|     return vreinterpretq_m128i_s16(vdupq_n_s16(w));
 | |
| }
 | |
| 
 | |
| // Broadcast 32-bit integer a to all elements of dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set1_epi32
 | |
| FORCE_INLINE __m128i _mm_set1_epi32(int _i)
 | |
| {
 | |
|     return vreinterpretq_m128i_s32(vdupq_n_s32(_i));
 | |
| }
 | |
| 
 | |
| // Broadcast 64-bit integer a to all elements of dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set1_epi64
 | |
| FORCE_INLINE __m128i _mm_set1_epi64(__m64 _i)
 | |
| {
 | |
|     return vreinterpretq_m128i_s64(vdupq_lane_s64(_i, 0));
 | |
| }
 | |
| 
 | |
| // Broadcast 64-bit integer a to all elements of dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set1_epi64x
 | |
| FORCE_INLINE __m128i _mm_set1_epi64x(int64_t _i)
 | |
| {
 | |
|     return vreinterpretq_m128i_s64(vdupq_n_s64(_i));
 | |
| }
 | |
| 
 | |
| // Broadcast 8-bit integer a to all elements of dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set1_epi8
 | |
| FORCE_INLINE __m128i _mm_set1_epi8(signed char w)
 | |
| {
 | |
|     return vreinterpretq_m128i_s8(vdupq_n_s8(w));
 | |
| }
 | |
| 
 | |
| // Broadcast double-precision (64-bit) floating-point value a to all elements of
 | |
| // dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set1_pd
 | |
| FORCE_INLINE __m128d _mm_set1_pd(double d)
 | |
| {
 | |
| #if defined(__aarch64__) || defined(_M_ARM64)
 | |
|     return vreinterpretq_m128d_f64(vdupq_n_f64(d));
 | |
| #else
 | |
|     return vreinterpretq_m128d_s64(vdupq_n_s64(*(int64_t *) &d));
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // Set packed 16-bit integers in dst with the supplied values in reverse order.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_setr_epi16
 | |
| FORCE_INLINE __m128i _mm_setr_epi16(short w0,
 | |
|                                     short w1,
 | |
|                                     short w2,
 | |
|                                     short w3,
 | |
|                                     short w4,
 | |
|                                     short w5,
 | |
|                                     short w6,
 | |
|                                     short w7)
 | |
| {
 | |
|     int16_t ALIGN_STRUCT(16) data[8] = {w0, w1, w2, w3, w4, w5, w6, w7};
 | |
|     return vreinterpretq_m128i_s16(vld1q_s16((int16_t *) data));
 | |
| }
 | |
| 
 | |
| // Set packed 32-bit integers in dst with the supplied values in reverse order.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_setr_epi32
 | |
| FORCE_INLINE __m128i _mm_setr_epi32(int i3, int i2, int i1, int i0)
 | |
| {
 | |
|     int32_t ALIGN_STRUCT(16) data[4] = {i3, i2, i1, i0};
 | |
|     return vreinterpretq_m128i_s32(vld1q_s32(data));
 | |
| }
 | |
| 
 | |
| // Set packed 64-bit integers in dst with the supplied values in reverse order.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_setr_epi64
 | |
| FORCE_INLINE __m128i _mm_setr_epi64(__m64 e1, __m64 e0)
 | |
| {
 | |
|     return vreinterpretq_m128i_s64(vcombine_s64(e1, e0));
 | |
| }
 | |
| 
 | |
| // Set packed 8-bit integers in dst with the supplied values in reverse order.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_setr_epi8
 | |
| FORCE_INLINE __m128i _mm_setr_epi8(signed char b0,
 | |
|                                    signed char b1,
 | |
|                                    signed char b2,
 | |
|                                    signed char b3,
 | |
|                                    signed char b4,
 | |
|                                    signed char b5,
 | |
|                                    signed char b6,
 | |
|                                    signed char b7,
 | |
|                                    signed char b8,
 | |
|                                    signed char b9,
 | |
|                                    signed char b10,
 | |
|                                    signed char b11,
 | |
|                                    signed char b12,
 | |
|                                    signed char b13,
 | |
|                                    signed char b14,
 | |
|                                    signed char b15)
 | |
| {
 | |
|     int8_t ALIGN_STRUCT(16)
 | |
|         data[16] = {(int8_t) b0,  (int8_t) b1,  (int8_t) b2,  (int8_t) b3,
 | |
|                     (int8_t) b4,  (int8_t) b5,  (int8_t) b6,  (int8_t) b7,
 | |
|                     (int8_t) b8,  (int8_t) b9,  (int8_t) b10, (int8_t) b11,
 | |
|                     (int8_t) b12, (int8_t) b13, (int8_t) b14, (int8_t) b15};
 | |
|     return (__m128i) vld1q_s8(data);
 | |
| }
 | |
| 
 | |
| // Set packed double-precision (64-bit) floating-point elements in dst with the
 | |
| // supplied values in reverse order.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_setr_pd
 | |
| FORCE_INLINE __m128d _mm_setr_pd(double e1, double e0)
 | |
| {
 | |
|     return _mm_set_pd(e0, e1);
 | |
| }
 | |
| 
 | |
| // Return vector of type __m128d with all elements set to zero.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_setzero_pd
 | |
| FORCE_INLINE __m128d _mm_setzero_pd(void)
 | |
| {
 | |
| #if defined(__aarch64__) || defined(_M_ARM64)
 | |
|     return vreinterpretq_m128d_f64(vdupq_n_f64(0));
 | |
| #else
 | |
|     return vreinterpretq_m128d_f32(vdupq_n_f32(0));
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // Return vector of type __m128i with all elements set to zero.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_setzero_si128
 | |
| FORCE_INLINE __m128i _mm_setzero_si128(void)
 | |
| {
 | |
|     return vreinterpretq_m128i_s32(vdupq_n_s32(0));
 | |
| }
 | |
| 
 | |
| // Shuffle 32-bit integers in a using the control in imm8, and store the results
 | |
| // in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_shuffle_epi32
 | |
| // FORCE_INLINE __m128i _mm_shuffle_epi32(__m128i a,
 | |
| //                                        __constrange(0,255) int imm)
 | |
| #if defined(_sse2neon_shuffle)
 | |
| #define _mm_shuffle_epi32(a, imm)                                            \
 | |
|     __extension__({                                                          \
 | |
|         int32x4_t _input = vreinterpretq_s32_m128i(a);                       \
 | |
|         int32x4_t _shuf =                                                    \
 | |
|             vshuffleq_s32(_input, _input, (imm) & (0x3), ((imm) >> 2) & 0x3, \
 | |
|                           ((imm) >> 4) & 0x3, ((imm) >> 6) & 0x3);           \
 | |
|         vreinterpretq_m128i_s32(_shuf);                                      \
 | |
|     })
 | |
| #else  // generic
 | |
| #define _mm_shuffle_epi32(a, imm)                           \
 | |
|     _sse2neon_define1(                                      \
 | |
|         __m128i, a, __m128i ret; switch (imm) {             \
 | |
|             case _MM_SHUFFLE(1, 0, 3, 2):                   \
 | |
|                 ret = _mm_shuffle_epi_1032(_a);             \
 | |
|                 break;                                      \
 | |
|             case _MM_SHUFFLE(2, 3, 0, 1):                   \
 | |
|                 ret = _mm_shuffle_epi_2301(_a);             \
 | |
|                 break;                                      \
 | |
|             case _MM_SHUFFLE(0, 3, 2, 1):                   \
 | |
|                 ret = _mm_shuffle_epi_0321(_a);             \
 | |
|                 break;                                      \
 | |
|             case _MM_SHUFFLE(2, 1, 0, 3):                   \
 | |
|                 ret = _mm_shuffle_epi_2103(_a);             \
 | |
|                 break;                                      \
 | |
|             case _MM_SHUFFLE(1, 0, 1, 0):                   \
 | |
|                 ret = _mm_shuffle_epi_1010(_a);             \
 | |
|                 break;                                      \
 | |
|             case _MM_SHUFFLE(1, 0, 0, 1):                   \
 | |
|                 ret = _mm_shuffle_epi_1001(_a);             \
 | |
|                 break;                                      \
 | |
|             case _MM_SHUFFLE(0, 1, 0, 1):                   \
 | |
|                 ret = _mm_shuffle_epi_0101(_a);             \
 | |
|                 break;                                      \
 | |
|             case _MM_SHUFFLE(2, 2, 1, 1):                   \
 | |
|                 ret = _mm_shuffle_epi_2211(_a);             \
 | |
|                 break;                                      \
 | |
|             case _MM_SHUFFLE(0, 1, 2, 2):                   \
 | |
|                 ret = _mm_shuffle_epi_0122(_a);             \
 | |
|                 break;                                      \
 | |
|             case _MM_SHUFFLE(3, 3, 3, 2):                   \
 | |
|                 ret = _mm_shuffle_epi_3332(_a);             \
 | |
|                 break;                                      \
 | |
|             case _MM_SHUFFLE(0, 0, 0, 0):                   \
 | |
|                 ret = _mm_shuffle_epi32_splat(_a, 0);       \
 | |
|                 break;                                      \
 | |
|             case _MM_SHUFFLE(1, 1, 1, 1):                   \
 | |
|                 ret = _mm_shuffle_epi32_splat(_a, 1);       \
 | |
|                 break;                                      \
 | |
|             case _MM_SHUFFLE(2, 2, 2, 2):                   \
 | |
|                 ret = _mm_shuffle_epi32_splat(_a, 2);       \
 | |
|                 break;                                      \
 | |
|             case _MM_SHUFFLE(3, 3, 3, 3):                   \
 | |
|                 ret = _mm_shuffle_epi32_splat(_a, 3);       \
 | |
|                 break;                                      \
 | |
|             default:                                        \
 | |
|                 ret = _mm_shuffle_epi32_default(_a, (imm)); \
 | |
|                 break;                                      \
 | |
|         } _sse2neon_return(ret);)
 | |
| #endif
 | |
| 
 | |
| // Shuffle double-precision (64-bit) floating-point elements using the control
 | |
| // in imm8, and store the results in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_shuffle_pd
 | |
| #ifdef _sse2neon_shuffle
 | |
| #define _mm_shuffle_pd(a, b, imm8)                                            \
 | |
|     vreinterpretq_m128d_s64(                                                  \
 | |
|         vshuffleq_s64(vreinterpretq_s64_m128d(a), vreinterpretq_s64_m128d(b), \
 | |
|                       imm8 & 0x1, ((imm8 & 0x2) >> 1) + 2))
 | |
| #else
 | |
| #define _mm_shuffle_pd(a, b, imm8)                                     \
 | |
|     _mm_castsi128_pd(_mm_set_epi64x(                                   \
 | |
|         vgetq_lane_s64(vreinterpretq_s64_m128d(b), (imm8 & 0x2) >> 1), \
 | |
|         vgetq_lane_s64(vreinterpretq_s64_m128d(a), imm8 & 0x1)))
 | |
| #endif
 | |
| 
 | |
| // FORCE_INLINE __m128i _mm_shufflehi_epi16(__m128i a,
 | |
| //                                          __constrange(0,255) int imm)
 | |
| #if defined(_sse2neon_shuffle)
 | |
| #define _mm_shufflehi_epi16(a, imm)                                           \
 | |
|     __extension__({                                                           \
 | |
|         int16x8_t _input = vreinterpretq_s16_m128i(a);                        \
 | |
|         int16x8_t _shuf =                                                     \
 | |
|             vshuffleq_s16(_input, _input, 0, 1, 2, 3, ((imm) & (0x3)) + 4,    \
 | |
|                           (((imm) >> 2) & 0x3) + 4, (((imm) >> 4) & 0x3) + 4, \
 | |
|                           (((imm) >> 6) & 0x3) + 4);                          \
 | |
|         vreinterpretq_m128i_s16(_shuf);                                       \
 | |
|     })
 | |
| #else  // generic
 | |
| #define _mm_shufflehi_epi16(a, imm) _mm_shufflehi_epi16_function((a), (imm))
 | |
| #endif
 | |
| 
 | |
| // FORCE_INLINE __m128i _mm_shufflelo_epi16(__m128i a,
 | |
| //                                          __constrange(0,255) int imm)
 | |
| #if defined(_sse2neon_shuffle)
 | |
| #define _mm_shufflelo_epi16(a, imm)                                  \
 | |
|     __extension__({                                                  \
 | |
|         int16x8_t _input = vreinterpretq_s16_m128i(a);               \
 | |
|         int16x8_t _shuf = vshuffleq_s16(                             \
 | |
|             _input, _input, ((imm) & (0x3)), (((imm) >> 2) & 0x3),   \
 | |
|             (((imm) >> 4) & 0x3), (((imm) >> 6) & 0x3), 4, 5, 6, 7); \
 | |
|         vreinterpretq_m128i_s16(_shuf);                              \
 | |
|     })
 | |
| #else  // generic
 | |
| #define _mm_shufflelo_epi16(a, imm) _mm_shufflelo_epi16_function((a), (imm))
 | |
| #endif
 | |
| 
 | |
| // Shift packed 16-bit integers in a left by count while shifting in zeros, and
 | |
| // store the results in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sll_epi16
 | |
| FORCE_INLINE __m128i _mm_sll_epi16(__m128i a, __m128i count)
 | |
| {
 | |
|     uint64_t c = vreinterpretq_nth_u64_m128i(count, 0);
 | |
|     if (_sse2neon_unlikely(c & ~15))
 | |
|         return _mm_setzero_si128();
 | |
| 
 | |
|     int16x8_t vc = vdupq_n_s16((int16_t) c);
 | |
|     return vreinterpretq_m128i_s16(vshlq_s16(vreinterpretq_s16_m128i(a), vc));
 | |
| }
 | |
| 
 | |
| // Shift packed 32-bit integers in a left by count while shifting in zeros, and
 | |
| // store the results in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sll_epi32
 | |
| FORCE_INLINE __m128i _mm_sll_epi32(__m128i a, __m128i count)
 | |
| {
 | |
|     uint64_t c = vreinterpretq_nth_u64_m128i(count, 0);
 | |
|     if (_sse2neon_unlikely(c & ~31))
 | |
|         return _mm_setzero_si128();
 | |
| 
 | |
|     int32x4_t vc = vdupq_n_s32((int32_t) c);
 | |
|     return vreinterpretq_m128i_s32(vshlq_s32(vreinterpretq_s32_m128i(a), vc));
 | |
| }
 | |
| 
 | |
| // Shift packed 64-bit integers in a left by count while shifting in zeros, and
 | |
| // store the results in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sll_epi64
 | |
| FORCE_INLINE __m128i _mm_sll_epi64(__m128i a, __m128i count)
 | |
| {
 | |
|     uint64_t c = vreinterpretq_nth_u64_m128i(count, 0);
 | |
|     if (_sse2neon_unlikely(c & ~63))
 | |
|         return _mm_setzero_si128();
 | |
| 
 | |
|     int64x2_t vc = vdupq_n_s64((int64_t) c);
 | |
|     return vreinterpretq_m128i_s64(vshlq_s64(vreinterpretq_s64_m128i(a), vc));
 | |
| }
 | |
| 
 | |
| // Shift packed 16-bit integers in a left by imm8 while shifting in zeros, and
 | |
| // store the results in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_slli_epi16
 | |
| FORCE_INLINE __m128i _mm_slli_epi16(__m128i a, int imm)
 | |
| {
 | |
|     if (_sse2neon_unlikely(imm & ~15))
 | |
|         return _mm_setzero_si128();
 | |
|     return vreinterpretq_m128i_s16(
 | |
|         vshlq_s16(vreinterpretq_s16_m128i(a), vdupq_n_s16(imm)));
 | |
| }
 | |
| 
 | |
| // Shift packed 32-bit integers in a left by imm8 while shifting in zeros, and
 | |
| // store the results in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_slli_epi32
 | |
| FORCE_INLINE __m128i _mm_slli_epi32(__m128i a, int imm)
 | |
| {
 | |
|     if (_sse2neon_unlikely(imm & ~31))
 | |
|         return _mm_setzero_si128();
 | |
|     return vreinterpretq_m128i_s32(
 | |
|         vshlq_s32(vreinterpretq_s32_m128i(a), vdupq_n_s32(imm)));
 | |
| }
 | |
| 
 | |
| // Shift packed 64-bit integers in a left by imm8 while shifting in zeros, and
 | |
| // store the results in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_slli_epi64
 | |
| FORCE_INLINE __m128i _mm_slli_epi64(__m128i a, int imm)
 | |
| {
 | |
|     if (_sse2neon_unlikely(imm & ~63))
 | |
|         return _mm_setzero_si128();
 | |
|     return vreinterpretq_m128i_s64(
 | |
|         vshlq_s64(vreinterpretq_s64_m128i(a), vdupq_n_s64(imm)));
 | |
| }
 | |
| 
 | |
| // Shift a left by imm8 bytes while shifting in zeros, and store the results in
 | |
| // dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_slli_si128
 | |
| #define _mm_slli_si128(a, imm)                                              \
 | |
|     _sse2neon_define1(                                                      \
 | |
|         __m128i, a, int8x16_t ret;                                          \
 | |
|         if (_sse2neon_unlikely(imm == 0)) ret = vreinterpretq_s8_m128i(_a); \
 | |
|         else if (_sse2neon_unlikely((imm) & ~15)) ret = vdupq_n_s8(0);      \
 | |
|         else ret = vextq_s8(vdupq_n_s8(0), vreinterpretq_s8_m128i(_a),      \
 | |
|                             ((imm <= 0 || imm > 15) ? 0 : (16 - imm)));     \
 | |
|         _sse2neon_return(vreinterpretq_m128i_s8(ret));)
 | |
| 
 | |
| // Compute the square root of packed double-precision (64-bit) floating-point
 | |
| // elements in a, and store the results in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sqrt_pd
 | |
| FORCE_INLINE __m128d _mm_sqrt_pd(__m128d a)
 | |
| {
 | |
| #if defined(__aarch64__) || defined(_M_ARM64)
 | |
|     return vreinterpretq_m128d_f64(vsqrtq_f64(vreinterpretq_f64_m128d(a)));
 | |
| #else
 | |
|     double a0 = sqrt(((double *) &a)[0]);
 | |
|     double a1 = sqrt(((double *) &a)[1]);
 | |
|     return _mm_set_pd(a1, a0);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // Compute the square root of the lower double-precision (64-bit) floating-point
 | |
| // element in b, store the result in the lower element of dst, and copy the
 | |
| // upper element from a to the upper element of dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sqrt_sd
 | |
| FORCE_INLINE __m128d _mm_sqrt_sd(__m128d a, __m128d b)
 | |
| {
 | |
| #if defined(__aarch64__) || defined(_M_ARM64)
 | |
|     return _mm_move_sd(a, _mm_sqrt_pd(b));
 | |
| #else
 | |
|     return _mm_set_pd(((double *) &a)[1], sqrt(((double *) &b)[0]));
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // Shift packed 16-bit integers in a right by count while shifting in sign bits,
 | |
| // and store the results in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sra_epi16
 | |
| FORCE_INLINE __m128i _mm_sra_epi16(__m128i a, __m128i count)
 | |
| {
 | |
|     int64_t c = vgetq_lane_s64(count, 0);
 | |
|     if (_sse2neon_unlikely(c & ~15))
 | |
|         return _mm_cmplt_epi16(a, _mm_setzero_si128());
 | |
|     return vreinterpretq_m128i_s16(
 | |
|         vshlq_s16((int16x8_t) a, vdupq_n_s16((int) -c)));
 | |
| }
 | |
| 
 | |
| // Shift packed 32-bit integers in a right by count while shifting in sign bits,
 | |
| // and store the results in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sra_epi32
 | |
| FORCE_INLINE __m128i _mm_sra_epi32(__m128i a, __m128i count)
 | |
| {
 | |
|     int64_t c = vgetq_lane_s64(count, 0);
 | |
|     if (_sse2neon_unlikely(c & ~31))
 | |
|         return _mm_cmplt_epi32(a, _mm_setzero_si128());
 | |
|     return vreinterpretq_m128i_s32(
 | |
|         vshlq_s32((int32x4_t) a, vdupq_n_s32((int) -c)));
 | |
| }
 | |
| 
 | |
| // Shift packed 16-bit integers in a right by imm8 while shifting in sign
 | |
| // bits, and store the results in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_srai_epi16
 | |
| FORCE_INLINE __m128i _mm_srai_epi16(__m128i a, int imm)
 | |
| {
 | |
|     const int count = (imm & ~15) ? 15 : imm;
 | |
|     return (__m128i) vshlq_s16((int16x8_t) a, vdupq_n_s16(-count));
 | |
| }
 | |
| 
 | |
| // Shift packed 32-bit integers in a right by imm8 while shifting in sign bits,
 | |
| // and store the results in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_srai_epi32
 | |
| // FORCE_INLINE __m128i _mm_srai_epi32(__m128i a, __constrange(0,255) int imm)
 | |
| #define _mm_srai_epi32(a, imm)                                                \
 | |
|     _sse2neon_define0(                                                        \
 | |
|         __m128i, a, __m128i ret; if (_sse2neon_unlikely((imm) == 0)) {        \
 | |
|             ret = _a;                                                         \
 | |
|         } else if (_sse2neon_likely(0 < (imm) && (imm) < 32)) {               \
 | |
|             ret = vreinterpretq_m128i_s32(                                    \
 | |
|                 vshlq_s32(vreinterpretq_s32_m128i(_a), vdupq_n_s32(-(imm)))); \
 | |
|         } else {                                                              \
 | |
|             ret = vreinterpretq_m128i_s32(                                    \
 | |
|                 vshrq_n_s32(vreinterpretq_s32_m128i(_a), 31));                \
 | |
|         } _sse2neon_return(ret);)
 | |
| 
 | |
| // Shift packed 16-bit integers in a right by count while shifting in zeros, and
 | |
| // store the results in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_srl_epi16
 | |
| FORCE_INLINE __m128i _mm_srl_epi16(__m128i a, __m128i count)
 | |
| {
 | |
|     uint64_t c = vreinterpretq_nth_u64_m128i(count, 0);
 | |
|     if (_sse2neon_unlikely(c & ~15))
 | |
|         return _mm_setzero_si128();
 | |
| 
 | |
|     int16x8_t vc = vdupq_n_s16(-(int16_t) c);
 | |
|     return vreinterpretq_m128i_u16(vshlq_u16(vreinterpretq_u16_m128i(a), vc));
 | |
| }
 | |
| 
 | |
| // Shift packed 32-bit integers in a right by count while shifting in zeros, and
 | |
| // store the results in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_srl_epi32
 | |
| FORCE_INLINE __m128i _mm_srl_epi32(__m128i a, __m128i count)
 | |
| {
 | |
|     uint64_t c = vreinterpretq_nth_u64_m128i(count, 0);
 | |
|     if (_sse2neon_unlikely(c & ~31))
 | |
|         return _mm_setzero_si128();
 | |
| 
 | |
|     int32x4_t vc = vdupq_n_s32(-(int32_t) c);
 | |
|     return vreinterpretq_m128i_u32(vshlq_u32(vreinterpretq_u32_m128i(a), vc));
 | |
| }
 | |
| 
 | |
| // Shift packed 64-bit integers in a right by count while shifting in zeros, and
 | |
| // store the results in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_srl_epi64
 | |
| FORCE_INLINE __m128i _mm_srl_epi64(__m128i a, __m128i count)
 | |
| {
 | |
|     uint64_t c = vreinterpretq_nth_u64_m128i(count, 0);
 | |
|     if (_sse2neon_unlikely(c & ~63))
 | |
|         return _mm_setzero_si128();
 | |
| 
 | |
|     int64x2_t vc = vdupq_n_s64(-(int64_t) c);
 | |
|     return vreinterpretq_m128i_u64(vshlq_u64(vreinterpretq_u64_m128i(a), vc));
 | |
| }
 | |
| 
 | |
| // Shift packed 16-bit integers in a right by imm8 while shifting in zeros, and
 | |
| // store the results in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_srli_epi16
 | |
| #define _mm_srli_epi16(a, imm)                                                \
 | |
|     _sse2neon_define0(                                                        \
 | |
|         __m128i, a, __m128i ret; if (_sse2neon_unlikely((imm) & ~15)) {       \
 | |
|             ret = _mm_setzero_si128();                                        \
 | |
|         } else {                                                              \
 | |
|             ret = vreinterpretq_m128i_u16(                                    \
 | |
|                 vshlq_u16(vreinterpretq_u16_m128i(_a), vdupq_n_s16(-(imm)))); \
 | |
|         } _sse2neon_return(ret);)
 | |
| 
 | |
| // Shift packed 32-bit integers in a right by imm8 while shifting in zeros, and
 | |
| // store the results in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_srli_epi32
 | |
| // FORCE_INLINE __m128i _mm_srli_epi32(__m128i a, __constrange(0,255) int imm)
 | |
| #define _mm_srli_epi32(a, imm)                                                \
 | |
|     _sse2neon_define0(                                                        \
 | |
|         __m128i, a, __m128i ret; if (_sse2neon_unlikely((imm) & ~31)) {       \
 | |
|             ret = _mm_setzero_si128();                                        \
 | |
|         } else {                                                              \
 | |
|             ret = vreinterpretq_m128i_u32(                                    \
 | |
|                 vshlq_u32(vreinterpretq_u32_m128i(_a), vdupq_n_s32(-(imm)))); \
 | |
|         } _sse2neon_return(ret);)
 | |
| 
 | |
| // Shift packed 64-bit integers in a right by imm8 while shifting in zeros, and
 | |
| // store the results in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_srli_epi64
 | |
| #define _mm_srli_epi64(a, imm)                                                \
 | |
|     _sse2neon_define0(                                                        \
 | |
|         __m128i, a, __m128i ret; if (_sse2neon_unlikely((imm) & ~63)) {       \
 | |
|             ret = _mm_setzero_si128();                                        \
 | |
|         } else {                                                              \
 | |
|             ret = vreinterpretq_m128i_u64(                                    \
 | |
|                 vshlq_u64(vreinterpretq_u64_m128i(_a), vdupq_n_s64(-(imm)))); \
 | |
|         } _sse2neon_return(ret);)
 | |
| 
 | |
| // Shift a right by imm8 bytes while shifting in zeros, and store the results in
 | |
| // dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_srli_si128
 | |
| #define _mm_srli_si128(a, imm)                                         \
 | |
|     _sse2neon_define1(                                                 \
 | |
|         __m128i, a, int8x16_t ret;                                     \
 | |
|         if (_sse2neon_unlikely((imm) & ~15)) ret = vdupq_n_s8(0);      \
 | |
|         else ret = vextq_s8(vreinterpretq_s8_m128i(_a), vdupq_n_s8(0), \
 | |
|                             (imm > 15 ? 0 : imm));                     \
 | |
|         _sse2neon_return(vreinterpretq_m128i_s8(ret));)
 | |
| 
 | |
| // Store 128-bits (composed of 2 packed double-precision (64-bit) floating-point
 | |
| // elements) from a into memory. mem_addr must be aligned on a 16-byte boundary
 | |
| // or a general-protection exception may be generated.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_store_pd
 | |
| FORCE_INLINE void _mm_store_pd(double *mem_addr, __m128d a)
 | |
| {
 | |
| #if defined(__aarch64__) || defined(_M_ARM64)
 | |
|     vst1q_f64((float64_t *) mem_addr, vreinterpretq_f64_m128d(a));
 | |
| #else
 | |
|     vst1q_f32((float32_t *) mem_addr, vreinterpretq_f32_m128d(a));
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // Store the lower double-precision (64-bit) floating-point element from a into
 | |
| // 2 contiguous elements in memory. mem_addr must be aligned on a 16-byte
 | |
| // boundary or a general-protection exception may be generated.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_store_pd1
 | |
| FORCE_INLINE void _mm_store_pd1(double *mem_addr, __m128d a)
 | |
| {
 | |
| #if defined(__aarch64__) || defined(_M_ARM64)
 | |
|     float64x1_t a_low = vget_low_f64(vreinterpretq_f64_m128d(a));
 | |
|     vst1q_f64((float64_t *) mem_addr,
 | |
|               vreinterpretq_f64_m128d(vcombine_f64(a_low, a_low)));
 | |
| #else
 | |
|     float32x2_t a_low = vget_low_f32(vreinterpretq_f32_m128d(a));
 | |
|     vst1q_f32((float32_t *) mem_addr,
 | |
|               vreinterpretq_f32_m128d(vcombine_f32(a_low, a_low)));
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // Store the lower double-precision (64-bit) floating-point element from a into
 | |
| // memory. mem_addr does not need to be aligned on any particular boundary.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=mm_store_sd
 | |
| FORCE_INLINE void _mm_store_sd(double *mem_addr, __m128d a)
 | |
| {
 | |
| #if defined(__aarch64__) || defined(_M_ARM64)
 | |
|     vst1_f64((float64_t *) mem_addr, vget_low_f64(vreinterpretq_f64_m128d(a)));
 | |
| #else
 | |
|     vst1_u64((uint64_t *) mem_addr, vget_low_u64(vreinterpretq_u64_m128d(a)));
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // Store 128-bits of integer data from a into memory. mem_addr must be aligned
 | |
| // on a 16-byte boundary or a general-protection exception may be generated.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_store_si128
 | |
| FORCE_INLINE void _mm_store_si128(__m128i *p, __m128i a)
 | |
| {
 | |
|     vst1q_s32((int32_t *) p, vreinterpretq_s32_m128i(a));
 | |
| }
 | |
| 
 | |
| // Store the lower double-precision (64-bit) floating-point element from a into
 | |
| // 2 contiguous elements in memory. mem_addr must be aligned on a 16-byte
 | |
| // boundary or a general-protection exception may be generated.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#expand=9,526,5601&text=_mm_store1_pd
 | |
| #define _mm_store1_pd _mm_store_pd1
 | |
| 
 | |
| // Store the upper double-precision (64-bit) floating-point element from a into
 | |
| // memory.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_storeh_pd
 | |
| FORCE_INLINE void _mm_storeh_pd(double *mem_addr, __m128d a)
 | |
| {
 | |
| #if defined(__aarch64__) || defined(_M_ARM64)
 | |
|     vst1_f64((float64_t *) mem_addr, vget_high_f64(vreinterpretq_f64_m128d(a)));
 | |
| #else
 | |
|     vst1_f32((float32_t *) mem_addr, vget_high_f32(vreinterpretq_f32_m128d(a)));
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // Store 64-bit integer from the first element of a into memory.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_storel_epi64
 | |
| FORCE_INLINE void _mm_storel_epi64(__m128i *a, __m128i b)
 | |
| {
 | |
|     vst1_u64((uint64_t *) a, vget_low_u64(vreinterpretq_u64_m128i(b)));
 | |
| }
 | |
| 
 | |
| // Store the lower double-precision (64-bit) floating-point element from a into
 | |
| // memory.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_storel_pd
 | |
| FORCE_INLINE void _mm_storel_pd(double *mem_addr, __m128d a)
 | |
| {
 | |
| #if defined(__aarch64__) || defined(_M_ARM64)
 | |
|     vst1_f64((float64_t *) mem_addr, vget_low_f64(vreinterpretq_f64_m128d(a)));
 | |
| #else
 | |
|     vst1_f32((float32_t *) mem_addr, vget_low_f32(vreinterpretq_f32_m128d(a)));
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // Store 2 double-precision (64-bit) floating-point elements from a into memory
 | |
| // in reverse order. mem_addr must be aligned on a 16-byte boundary or a
 | |
| // general-protection exception may be generated.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_storer_pd
 | |
| FORCE_INLINE void _mm_storer_pd(double *mem_addr, __m128d a)
 | |
| {
 | |
|     float32x4_t f = vreinterpretq_f32_m128d(a);
 | |
|     _mm_store_pd(mem_addr, vreinterpretq_m128d_f32(vextq_f32(f, f, 2)));
 | |
| }
 | |
| 
 | |
| // Store 128-bits (composed of 2 packed double-precision (64-bit) floating-point
 | |
| // elements) from a into memory. mem_addr does not need to be aligned on any
 | |
| // particular boundary.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_storeu_pd
 | |
| FORCE_INLINE void _mm_storeu_pd(double *mem_addr, __m128d a)
 | |
| {
 | |
|     _mm_store_pd(mem_addr, a);
 | |
| }
 | |
| 
 | |
| // Store 128-bits of integer data from a into memory. mem_addr does not need to
 | |
| // be aligned on any particular boundary.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_storeu_si128
 | |
| FORCE_INLINE void _mm_storeu_si128(__m128i *p, __m128i a)
 | |
| {
 | |
|     vst1q_s32((int32_t *) p, vreinterpretq_s32_m128i(a));
 | |
| }
 | |
| 
 | |
| // Store 32-bit integer from the first element of a into memory. mem_addr does
 | |
| // not need to be aligned on any particular boundary.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_storeu_si32
 | |
| FORCE_INLINE void _mm_storeu_si32(void *p, __m128i a)
 | |
| {
 | |
|     vst1q_lane_s32((int32_t *) p, vreinterpretq_s32_m128i(a), 0);
 | |
| }
 | |
| 
 | |
| // Store 128-bits (composed of 2 packed double-precision (64-bit) floating-point
 | |
| // elements) from a into memory using a non-temporal memory hint. mem_addr must
 | |
| // be aligned on a 16-byte boundary or a general-protection exception may be
 | |
| // generated.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_stream_pd
 | |
| FORCE_INLINE void _mm_stream_pd(double *p, __m128d a)
 | |
| {
 | |
| #if __has_builtin(__builtin_nontemporal_store)
 | |
|     __builtin_nontemporal_store(a, (__m128d *) p);
 | |
| #elif defined(__aarch64__) || defined(_M_ARM64)
 | |
|     vst1q_f64(p, vreinterpretq_f64_m128d(a));
 | |
| #else
 | |
|     vst1q_s64((int64_t *) p, vreinterpretq_s64_m128d(a));
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // Store 128-bits of integer data from a into memory using a non-temporal memory
 | |
| // hint. mem_addr must be aligned on a 16-byte boundary or a general-protection
 | |
| // exception may be generated.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_stream_si128
 | |
| FORCE_INLINE void _mm_stream_si128(__m128i *p, __m128i a)
 | |
| {
 | |
| #if __has_builtin(__builtin_nontemporal_store)
 | |
|     __builtin_nontemporal_store(a, p);
 | |
| #else
 | |
|     vst1q_s64((int64_t *) p, vreinterpretq_s64_m128i(a));
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // Store 32-bit integer a into memory using a non-temporal hint to minimize
 | |
| // cache pollution. If the cache line containing address mem_addr is already in
 | |
| // the cache, the cache will be updated.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_stream_si32
 | |
| FORCE_INLINE void _mm_stream_si32(int *p, int a)
 | |
| {
 | |
|     vst1q_lane_s32((int32_t *) p, vdupq_n_s32(a), 0);
 | |
| }
 | |
| 
 | |
| // Store 64-bit integer a into memory using a non-temporal hint to minimize
 | |
| // cache pollution. If the cache line containing address mem_addr is already in
 | |
| // the cache, the cache will be updated.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_stream_si64
 | |
| FORCE_INLINE void _mm_stream_si64(__int64 *p, __int64 a)
 | |
| {
 | |
|     vst1_s64((int64_t *) p, vdup_n_s64((int64_t) a));
 | |
| }
 | |
| 
 | |
| // Subtract packed 16-bit integers in b from packed 16-bit integers in a, and
 | |
| // store the results in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sub_epi16
 | |
| FORCE_INLINE __m128i _mm_sub_epi16(__m128i a, __m128i b)
 | |
| {
 | |
|     return vreinterpretq_m128i_s16(
 | |
|         vsubq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b)));
 | |
| }
 | |
| 
 | |
| // Subtract packed 32-bit integers in b from packed 32-bit integers in a, and
 | |
| // store the results in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sub_epi32
 | |
| FORCE_INLINE __m128i _mm_sub_epi32(__m128i a, __m128i b)
 | |
| {
 | |
|     return vreinterpretq_m128i_s32(
 | |
|         vsubq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b)));
 | |
| }
 | |
| 
 | |
| // Subtract packed 64-bit integers in b from packed 64-bit integers in a, and
 | |
| // store the results in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sub_epi64
 | |
| FORCE_INLINE __m128i _mm_sub_epi64(__m128i a, __m128i b)
 | |
| {
 | |
|     return vreinterpretq_m128i_s64(
 | |
|         vsubq_s64(vreinterpretq_s64_m128i(a), vreinterpretq_s64_m128i(b)));
 | |
| }
 | |
| 
 | |
| // Subtract packed 8-bit integers in b from packed 8-bit integers in a, and
 | |
| // store the results in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sub_epi8
 | |
| FORCE_INLINE __m128i _mm_sub_epi8(__m128i a, __m128i b)
 | |
| {
 | |
|     return vreinterpretq_m128i_s8(
 | |
|         vsubq_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b)));
 | |
| }
 | |
| 
 | |
| // Subtract packed double-precision (64-bit) floating-point elements in b from
 | |
| // packed double-precision (64-bit) floating-point elements in a, and store the
 | |
| // results in dst.
 | |
| //  https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=mm_sub_pd
 | |
| FORCE_INLINE __m128d _mm_sub_pd(__m128d a, __m128d b)
 | |
| {
 | |
| #if defined(__aarch64__) || defined(_M_ARM64)
 | |
|     return vreinterpretq_m128d_f64(
 | |
|         vsubq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)));
 | |
| #else
 | |
|     double *da = (double *) &a;
 | |
|     double *db = (double *) &b;
 | |
|     double c[2];
 | |
|     c[0] = da[0] - db[0];
 | |
|     c[1] = da[1] - db[1];
 | |
|     return vld1q_f32((float32_t *) c);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // Subtract the lower double-precision (64-bit) floating-point element in b from
 | |
| // the lower double-precision (64-bit) floating-point element in a, store the
 | |
| // result in the lower element of dst, and copy the upper element from a to the
 | |
| // upper element of dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sub_sd
 | |
| FORCE_INLINE __m128d _mm_sub_sd(__m128d a, __m128d b)
 | |
| {
 | |
|     return _mm_move_sd(a, _mm_sub_pd(a, b));
 | |
| }
 | |
| 
 | |
| // Subtract 64-bit integer b from 64-bit integer a, and store the result in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sub_si64
 | |
| FORCE_INLINE __m64 _mm_sub_si64(__m64 a, __m64 b)
 | |
| {
 | |
|     return vreinterpret_m64_s64(
 | |
|         vsub_s64(vreinterpret_s64_m64(a), vreinterpret_s64_m64(b)));
 | |
| }
 | |
| 
 | |
| // Subtract packed signed 16-bit integers in b from packed 16-bit integers in a
 | |
| // using saturation, and store the results in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_subs_epi16
 | |
| FORCE_INLINE __m128i _mm_subs_epi16(__m128i a, __m128i b)
 | |
| {
 | |
|     return vreinterpretq_m128i_s16(
 | |
|         vqsubq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b)));
 | |
| }
 | |
| 
 | |
| // Subtract packed signed 8-bit integers in b from packed 8-bit integers in a
 | |
| // using saturation, and store the results in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_subs_epi8
 | |
| FORCE_INLINE __m128i _mm_subs_epi8(__m128i a, __m128i b)
 | |
| {
 | |
|     return vreinterpretq_m128i_s8(
 | |
|         vqsubq_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b)));
 | |
| }
 | |
| 
 | |
| // Subtract packed unsigned 16-bit integers in b from packed unsigned 16-bit
 | |
| // integers in a using saturation, and store the results in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_subs_epu16
 | |
| FORCE_INLINE __m128i _mm_subs_epu16(__m128i a, __m128i b)
 | |
| {
 | |
|     return vreinterpretq_m128i_u16(
 | |
|         vqsubq_u16(vreinterpretq_u16_m128i(a), vreinterpretq_u16_m128i(b)));
 | |
| }
 | |
| 
 | |
| // Subtract packed unsigned 8-bit integers in b from packed unsigned 8-bit
 | |
| // integers in a using saturation, and store the results in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_subs_epu8
 | |
| FORCE_INLINE __m128i _mm_subs_epu8(__m128i a, __m128i b)
 | |
| {
 | |
|     return vreinterpretq_m128i_u8(
 | |
|         vqsubq_u8(vreinterpretq_u8_m128i(a), vreinterpretq_u8_m128i(b)));
 | |
| }
 | |
| 
 | |
| #define _mm_ucomieq_sd _mm_comieq_sd
 | |
| #define _mm_ucomige_sd _mm_comige_sd
 | |
| #define _mm_ucomigt_sd _mm_comigt_sd
 | |
| #define _mm_ucomile_sd _mm_comile_sd
 | |
| #define _mm_ucomilt_sd _mm_comilt_sd
 | |
| #define _mm_ucomineq_sd _mm_comineq_sd
 | |
| 
 | |
| // Return vector of type __m128d with undefined elements.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_undefined_pd
 | |
| FORCE_INLINE __m128d _mm_undefined_pd(void)
 | |
| {
 | |
| #if defined(__GNUC__) || defined(__clang__)
 | |
| #pragma GCC diagnostic push
 | |
| #pragma GCC diagnostic ignored "-Wuninitialized"
 | |
| #endif
 | |
|     __m128d a;
 | |
| #if defined(_MSC_VER)
 | |
|     a = _mm_setzero_pd();
 | |
| #endif
 | |
|     return a;
 | |
| #if defined(__GNUC__) || defined(__clang__)
 | |
| #pragma GCC diagnostic pop
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // Unpack and interleave 16-bit integers from the high half of a and b, and
 | |
| // store the results in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_unpackhi_epi16
 | |
| FORCE_INLINE __m128i _mm_unpackhi_epi16(__m128i a, __m128i b)
 | |
| {
 | |
| #if defined(__aarch64__) || defined(_M_ARM64)
 | |
|     return vreinterpretq_m128i_s16(
 | |
|         vzip2q_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b)));
 | |
| #else
 | |
|     int16x4_t a1 = vget_high_s16(vreinterpretq_s16_m128i(a));
 | |
|     int16x4_t b1 = vget_high_s16(vreinterpretq_s16_m128i(b));
 | |
|     int16x4x2_t result = vzip_s16(a1, b1);
 | |
|     return vreinterpretq_m128i_s16(vcombine_s16(result.val[0], result.val[1]));
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // Unpack and interleave 32-bit integers from the high half of a and b, and
 | |
| // store the results in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_unpackhi_epi32
 | |
| FORCE_INLINE __m128i _mm_unpackhi_epi32(__m128i a, __m128i b)
 | |
| {
 | |
| #if defined(__aarch64__) || defined(_M_ARM64)
 | |
|     return vreinterpretq_m128i_s32(
 | |
|         vzip2q_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b)));
 | |
| #else
 | |
|     int32x2_t a1 = vget_high_s32(vreinterpretq_s32_m128i(a));
 | |
|     int32x2_t b1 = vget_high_s32(vreinterpretq_s32_m128i(b));
 | |
|     int32x2x2_t result = vzip_s32(a1, b1);
 | |
|     return vreinterpretq_m128i_s32(vcombine_s32(result.val[0], result.val[1]));
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // Unpack and interleave 64-bit integers from the high half of a and b, and
 | |
| // store the results in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_unpackhi_epi64
 | |
| FORCE_INLINE __m128i _mm_unpackhi_epi64(__m128i a, __m128i b)
 | |
| {
 | |
| #if defined(__aarch64__) || defined(_M_ARM64)
 | |
|     return vreinterpretq_m128i_s64(
 | |
|         vzip2q_s64(vreinterpretq_s64_m128i(a), vreinterpretq_s64_m128i(b)));
 | |
| #else
 | |
|     int64x1_t a_h = vget_high_s64(vreinterpretq_s64_m128i(a));
 | |
|     int64x1_t b_h = vget_high_s64(vreinterpretq_s64_m128i(b));
 | |
|     return vreinterpretq_m128i_s64(vcombine_s64(a_h, b_h));
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // Unpack and interleave 8-bit integers from the high half of a and b, and store
 | |
| // the results in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_unpackhi_epi8
 | |
| FORCE_INLINE __m128i _mm_unpackhi_epi8(__m128i a, __m128i b)
 | |
| {
 | |
| #if defined(__aarch64__) || defined(_M_ARM64)
 | |
|     return vreinterpretq_m128i_s8(
 | |
|         vzip2q_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b)));
 | |
| #else
 | |
|     int8x8_t a1 =
 | |
|         vreinterpret_s8_s16(vget_high_s16(vreinterpretq_s16_m128i(a)));
 | |
|     int8x8_t b1 =
 | |
|         vreinterpret_s8_s16(vget_high_s16(vreinterpretq_s16_m128i(b)));
 | |
|     int8x8x2_t result = vzip_s8(a1, b1);
 | |
|     return vreinterpretq_m128i_s8(vcombine_s8(result.val[0], result.val[1]));
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // Unpack and interleave double-precision (64-bit) floating-point elements from
 | |
| // the high half of a and b, and store the results in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_unpackhi_pd
 | |
| FORCE_INLINE __m128d _mm_unpackhi_pd(__m128d a, __m128d b)
 | |
| {
 | |
| #if defined(__aarch64__) || defined(_M_ARM64)
 | |
|     return vreinterpretq_m128d_f64(
 | |
|         vzip2q_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)));
 | |
| #else
 | |
|     return vreinterpretq_m128d_s64(
 | |
|         vcombine_s64(vget_high_s64(vreinterpretq_s64_m128d(a)),
 | |
|                      vget_high_s64(vreinterpretq_s64_m128d(b))));
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // Unpack and interleave 16-bit integers from the low half of a and b, and store
 | |
| // the results in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_unpacklo_epi16
 | |
| FORCE_INLINE __m128i _mm_unpacklo_epi16(__m128i a, __m128i b)
 | |
| {
 | |
| #if defined(__aarch64__) || defined(_M_ARM64)
 | |
|     return vreinterpretq_m128i_s16(
 | |
|         vzip1q_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b)));
 | |
| #else
 | |
|     int16x4_t a1 = vget_low_s16(vreinterpretq_s16_m128i(a));
 | |
|     int16x4_t b1 = vget_low_s16(vreinterpretq_s16_m128i(b));
 | |
|     int16x4x2_t result = vzip_s16(a1, b1);
 | |
|     return vreinterpretq_m128i_s16(vcombine_s16(result.val[0], result.val[1]));
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // Unpack and interleave 32-bit integers from the low half of a and b, and store
 | |
| // the results in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_unpacklo_epi32
 | |
| FORCE_INLINE __m128i _mm_unpacklo_epi32(__m128i a, __m128i b)
 | |
| {
 | |
| #if defined(__aarch64__) || defined(_M_ARM64)
 | |
|     return vreinterpretq_m128i_s32(
 | |
|         vzip1q_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b)));
 | |
| #else
 | |
|     int32x2_t a1 = vget_low_s32(vreinterpretq_s32_m128i(a));
 | |
|     int32x2_t b1 = vget_low_s32(vreinterpretq_s32_m128i(b));
 | |
|     int32x2x2_t result = vzip_s32(a1, b1);
 | |
|     return vreinterpretq_m128i_s32(vcombine_s32(result.val[0], result.val[1]));
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // Unpack and interleave 64-bit integers from the low half of a and b, and store
 | |
| // the results in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_unpacklo_epi64
 | |
| FORCE_INLINE __m128i _mm_unpacklo_epi64(__m128i a, __m128i b)
 | |
| {
 | |
| #if defined(__aarch64__) || defined(_M_ARM64)
 | |
|     return vreinterpretq_m128i_s64(
 | |
|         vzip1q_s64(vreinterpretq_s64_m128i(a), vreinterpretq_s64_m128i(b)));
 | |
| #else
 | |
|     int64x1_t a_l = vget_low_s64(vreinterpretq_s64_m128i(a));
 | |
|     int64x1_t b_l = vget_low_s64(vreinterpretq_s64_m128i(b));
 | |
|     return vreinterpretq_m128i_s64(vcombine_s64(a_l, b_l));
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // Unpack and interleave 8-bit integers from the low half of a and b, and store
 | |
| // the results in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_unpacklo_epi8
 | |
| FORCE_INLINE __m128i _mm_unpacklo_epi8(__m128i a, __m128i b)
 | |
| {
 | |
| #if defined(__aarch64__) || defined(_M_ARM64)
 | |
|     return vreinterpretq_m128i_s8(
 | |
|         vzip1q_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b)));
 | |
| #else
 | |
|     int8x8_t a1 = vreinterpret_s8_s16(vget_low_s16(vreinterpretq_s16_m128i(a)));
 | |
|     int8x8_t b1 = vreinterpret_s8_s16(vget_low_s16(vreinterpretq_s16_m128i(b)));
 | |
|     int8x8x2_t result = vzip_s8(a1, b1);
 | |
|     return vreinterpretq_m128i_s8(vcombine_s8(result.val[0], result.val[1]));
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // Unpack and interleave double-precision (64-bit) floating-point elements from
 | |
| // the low half of a and b, and store the results in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_unpacklo_pd
 | |
| FORCE_INLINE __m128d _mm_unpacklo_pd(__m128d a, __m128d b)
 | |
| {
 | |
| #if defined(__aarch64__) || defined(_M_ARM64)
 | |
|     return vreinterpretq_m128d_f64(
 | |
|         vzip1q_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)));
 | |
| #else
 | |
|     return vreinterpretq_m128d_s64(
 | |
|         vcombine_s64(vget_low_s64(vreinterpretq_s64_m128d(a)),
 | |
|                      vget_low_s64(vreinterpretq_s64_m128d(b))));
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // Compute the bitwise XOR of packed double-precision (64-bit) floating-point
 | |
| // elements in a and b, and store the results in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_xor_pd
 | |
| FORCE_INLINE __m128d _mm_xor_pd(__m128d a, __m128d b)
 | |
| {
 | |
|     return vreinterpretq_m128d_s64(
 | |
|         veorq_s64(vreinterpretq_s64_m128d(a), vreinterpretq_s64_m128d(b)));
 | |
| }
 | |
| 
 | |
| // Compute the bitwise XOR of 128 bits (representing integer data) in a and b,
 | |
| // and store the result in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_xor_si128
 | |
| FORCE_INLINE __m128i _mm_xor_si128(__m128i a, __m128i b)
 | |
| {
 | |
|     return vreinterpretq_m128i_s32(
 | |
|         veorq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b)));
 | |
| }
 | |
| 
 | |
| /* SSE3 */
 | |
| 
 | |
| // Alternatively add and subtract packed double-precision (64-bit)
 | |
| // floating-point elements in a to/from packed elements in b, and store the
 | |
| // results in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_addsub_pd
 | |
| FORCE_INLINE __m128d _mm_addsub_pd(__m128d a, __m128d b)
 | |
| {
 | |
|     _sse2neon_const __m128d mask = _mm_set_pd(1.0f, -1.0f);
 | |
| #if defined(__aarch64__) || defined(_M_ARM64)
 | |
|     return vreinterpretq_m128d_f64(vfmaq_f64(vreinterpretq_f64_m128d(a),
 | |
|                                              vreinterpretq_f64_m128d(b),
 | |
|                                              vreinterpretq_f64_m128d(mask)));
 | |
| #else
 | |
|     return _mm_add_pd(_mm_mul_pd(b, mask), a);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // Alternatively add and subtract packed single-precision (32-bit)
 | |
| // floating-point elements in a to/from packed elements in b, and store the
 | |
| // results in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=addsub_ps
 | |
| FORCE_INLINE __m128 _mm_addsub_ps(__m128 a, __m128 b)
 | |
| {
 | |
|     _sse2neon_const __m128 mask = _mm_setr_ps(-1.0f, 1.0f, -1.0f, 1.0f);
 | |
| #if (defined(__aarch64__) || defined(_M_ARM64)) || \
 | |
|     defined(__ARM_FEATURE_FMA) /* VFPv4+ */
 | |
|     return vreinterpretq_m128_f32(vfmaq_f32(vreinterpretq_f32_m128(a),
 | |
|                                             vreinterpretq_f32_m128(mask),
 | |
|                                             vreinterpretq_f32_m128(b)));
 | |
| #else
 | |
|     return _mm_add_ps(_mm_mul_ps(b, mask), a);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // Horizontally add adjacent pairs of double-precision (64-bit) floating-point
 | |
| // elements in a and b, and pack the results in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_hadd_pd
 | |
| FORCE_INLINE __m128d _mm_hadd_pd(__m128d a, __m128d b)
 | |
| {
 | |
| #if defined(__aarch64__) || defined(_M_ARM64)
 | |
|     return vreinterpretq_m128d_f64(
 | |
|         vpaddq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)));
 | |
| #else
 | |
|     double *da = (double *) &a;
 | |
|     double *db = (double *) &b;
 | |
|     double c[] = {da[0] + da[1], db[0] + db[1]};
 | |
|     return vreinterpretq_m128d_u64(vld1q_u64((uint64_t *) c));
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // Horizontally add adjacent pairs of single-precision (32-bit) floating-point
 | |
| // elements in a and b, and pack the results in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_hadd_ps
 | |
| FORCE_INLINE __m128 _mm_hadd_ps(__m128 a, __m128 b)
 | |
| {
 | |
| #if defined(__aarch64__) || defined(_M_ARM64)
 | |
|     return vreinterpretq_m128_f32(
 | |
|         vpaddq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
 | |
| #else
 | |
|     float32x2_t a10 = vget_low_f32(vreinterpretq_f32_m128(a));
 | |
|     float32x2_t a32 = vget_high_f32(vreinterpretq_f32_m128(a));
 | |
|     float32x2_t b10 = vget_low_f32(vreinterpretq_f32_m128(b));
 | |
|     float32x2_t b32 = vget_high_f32(vreinterpretq_f32_m128(b));
 | |
|     return vreinterpretq_m128_f32(
 | |
|         vcombine_f32(vpadd_f32(a10, a32), vpadd_f32(b10, b32)));
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // Horizontally subtract adjacent pairs of double-precision (64-bit)
 | |
| // floating-point elements in a and b, and pack the results in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_hsub_pd
 | |
| FORCE_INLINE __m128d _mm_hsub_pd(__m128d _a, __m128d _b)
 | |
| {
 | |
| #if defined(__aarch64__) || defined(_M_ARM64)
 | |
|     float64x2_t a = vreinterpretq_f64_m128d(_a);
 | |
|     float64x2_t b = vreinterpretq_f64_m128d(_b);
 | |
|     return vreinterpretq_m128d_f64(
 | |
|         vsubq_f64(vuzp1q_f64(a, b), vuzp2q_f64(a, b)));
 | |
| #else
 | |
|     double *da = (double *) &_a;
 | |
|     double *db = (double *) &_b;
 | |
|     double c[] = {da[0] - da[1], db[0] - db[1]};
 | |
|     return vreinterpretq_m128d_u64(vld1q_u64((uint64_t *) c));
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // Horizontally subtract adjacent pairs of single-precision (32-bit)
 | |
| // floating-point elements in a and b, and pack the results in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_hsub_ps
 | |
| FORCE_INLINE __m128 _mm_hsub_ps(__m128 _a, __m128 _b)
 | |
| {
 | |
|     float32x4_t a = vreinterpretq_f32_m128(_a);
 | |
|     float32x4_t b = vreinterpretq_f32_m128(_b);
 | |
| #if defined(__aarch64__) || defined(_M_ARM64)
 | |
|     return vreinterpretq_m128_f32(
 | |
|         vsubq_f32(vuzp1q_f32(a, b), vuzp2q_f32(a, b)));
 | |
| #else
 | |
|     float32x4x2_t c = vuzpq_f32(a, b);
 | |
|     return vreinterpretq_m128_f32(vsubq_f32(c.val[0], c.val[1]));
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // Load 128-bits of integer data from unaligned memory into dst. This intrinsic
 | |
| // may perform better than _mm_loadu_si128 when the data crosses a cache line
 | |
| // boundary.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_lddqu_si128
 | |
| #define _mm_lddqu_si128 _mm_loadu_si128
 | |
| 
 | |
| // Load a double-precision (64-bit) floating-point element from memory into both
 | |
| // elements of dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_loaddup_pd
 | |
| #define _mm_loaddup_pd _mm_load1_pd
 | |
| 
 | |
| // Duplicate the low double-precision (64-bit) floating-point element from a,
 | |
| // and store the results in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_movedup_pd
 | |
| FORCE_INLINE __m128d _mm_movedup_pd(__m128d a)
 | |
| {
 | |
| #if defined(__aarch64__) || defined(_M_ARM64)
 | |
|     return vreinterpretq_m128d_f64(
 | |
|         vdupq_laneq_f64(vreinterpretq_f64_m128d(a), 0));
 | |
| #else
 | |
|     return vreinterpretq_m128d_u64(
 | |
|         vdupq_n_u64(vgetq_lane_u64(vreinterpretq_u64_m128d(a), 0)));
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // Duplicate odd-indexed single-precision (32-bit) floating-point elements
 | |
| // from a, and store the results in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_movehdup_ps
 | |
| FORCE_INLINE __m128 _mm_movehdup_ps(__m128 a)
 | |
| {
 | |
| #if defined(__aarch64__) || defined(_M_ARM64)
 | |
|     return vreinterpretq_m128_f32(
 | |
|         vtrn2q_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a)));
 | |
| #elif defined(_sse2neon_shuffle)
 | |
|     return vreinterpretq_m128_f32(vshuffleq_s32(
 | |
|         vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a), 1, 1, 3, 3));
 | |
| #else
 | |
|     float32_t a1 = vgetq_lane_f32(vreinterpretq_f32_m128(a), 1);
 | |
|     float32_t a3 = vgetq_lane_f32(vreinterpretq_f32_m128(a), 3);
 | |
|     float ALIGN_STRUCT(16) data[4] = {a1, a1, a3, a3};
 | |
|     return vreinterpretq_m128_f32(vld1q_f32(data));
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // Duplicate even-indexed single-precision (32-bit) floating-point elements
 | |
| // from a, and store the results in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_moveldup_ps
 | |
| FORCE_INLINE __m128 _mm_moveldup_ps(__m128 a)
 | |
| {
 | |
| #if defined(__aarch64__) || defined(_M_ARM64)
 | |
|     return vreinterpretq_m128_f32(
 | |
|         vtrn1q_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a)));
 | |
| #elif defined(_sse2neon_shuffle)
 | |
|     return vreinterpretq_m128_f32(vshuffleq_s32(
 | |
|         vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a), 0, 0, 2, 2));
 | |
| #else
 | |
|     float32_t a0 = vgetq_lane_f32(vreinterpretq_f32_m128(a), 0);
 | |
|     float32_t a2 = vgetq_lane_f32(vreinterpretq_f32_m128(a), 2);
 | |
|     float ALIGN_STRUCT(16) data[4] = {a0, a0, a2, a2};
 | |
|     return vreinterpretq_m128_f32(vld1q_f32(data));
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /* SSSE3 */
 | |
| 
 | |
| // Compute the absolute value of packed signed 16-bit integers in a, and store
 | |
| // the unsigned results in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_abs_epi16
 | |
| FORCE_INLINE __m128i _mm_abs_epi16(__m128i a)
 | |
| {
 | |
|     return vreinterpretq_m128i_s16(vabsq_s16(vreinterpretq_s16_m128i(a)));
 | |
| }
 | |
| 
 | |
| // Compute the absolute value of packed signed 32-bit integers in a, and store
 | |
| // the unsigned results in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_abs_epi32
 | |
| FORCE_INLINE __m128i _mm_abs_epi32(__m128i a)
 | |
| {
 | |
|     return vreinterpretq_m128i_s32(vabsq_s32(vreinterpretq_s32_m128i(a)));
 | |
| }
 | |
| 
 | |
| // Compute the absolute value of packed signed 8-bit integers in a, and store
 | |
| // the unsigned results in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_abs_epi8
 | |
| FORCE_INLINE __m128i _mm_abs_epi8(__m128i a)
 | |
| {
 | |
|     return vreinterpretq_m128i_s8(vabsq_s8(vreinterpretq_s8_m128i(a)));
 | |
| }
 | |
| 
 | |
| // Compute the absolute value of packed signed 16-bit integers in a, and store
 | |
| // the unsigned results in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_abs_pi16
 | |
| FORCE_INLINE __m64 _mm_abs_pi16(__m64 a)
 | |
| {
 | |
|     return vreinterpret_m64_s16(vabs_s16(vreinterpret_s16_m64(a)));
 | |
| }
 | |
| 
 | |
| // Compute the absolute value of packed signed 32-bit integers in a, and store
 | |
| // the unsigned results in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_abs_pi32
 | |
| FORCE_INLINE __m64 _mm_abs_pi32(__m64 a)
 | |
| {
 | |
|     return vreinterpret_m64_s32(vabs_s32(vreinterpret_s32_m64(a)));
 | |
| }
 | |
| 
 | |
| // Compute the absolute value of packed signed 8-bit integers in a, and store
 | |
| // the unsigned results in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_abs_pi8
 | |
| FORCE_INLINE __m64 _mm_abs_pi8(__m64 a)
 | |
| {
 | |
|     return vreinterpret_m64_s8(vabs_s8(vreinterpret_s8_m64(a)));
 | |
| }
 | |
| 
 | |
| // Concatenate 16-byte blocks in a and b into a 32-byte temporary result, shift
 | |
| // the result right by imm8 bytes, and store the low 16 bytes in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_alignr_epi8
 | |
| #if defined(__GNUC__) && !defined(__clang__)
 | |
| #define _mm_alignr_epi8(a, b, imm)                                            \
 | |
|     __extension__({                                                           \
 | |
|         uint8x16_t _a = vreinterpretq_u8_m128i(a);                            \
 | |
|         uint8x16_t _b = vreinterpretq_u8_m128i(b);                            \
 | |
|         __m128i ret;                                                          \
 | |
|         if (_sse2neon_unlikely((imm) & ~31))                                  \
 | |
|             ret = vreinterpretq_m128i_u8(vdupq_n_u8(0));                      \
 | |
|         else if (imm >= 16)                                                   \
 | |
|             ret = _mm_srli_si128(a, imm >= 16 ? imm - 16 : 0);                \
 | |
|         else                                                                  \
 | |
|             ret =                                                             \
 | |
|                 vreinterpretq_m128i_u8(vextq_u8(_b, _a, imm < 16 ? imm : 0)); \
 | |
|         ret;                                                                  \
 | |
|     })
 | |
| 
 | |
| #else
 | |
| #define _mm_alignr_epi8(a, b, imm)                                          \
 | |
|     _sse2neon_define2(                                                      \
 | |
|         __m128i, a, b, uint8x16_t __a = vreinterpretq_u8_m128i(_a);         \
 | |
|         uint8x16_t __b = vreinterpretq_u8_m128i(_b); __m128i ret;           \
 | |
|         if (_sse2neon_unlikely((imm) & ~31)) ret =                          \
 | |
|             vreinterpretq_m128i_u8(vdupq_n_u8(0));                          \
 | |
|         else if (imm >= 16) ret =                                           \
 | |
|             _mm_srli_si128(_a, imm >= 16 ? imm - 16 : 0);                   \
 | |
|         else ret =                                                          \
 | |
|             vreinterpretq_m128i_u8(vextq_u8(__b, __a, imm < 16 ? imm : 0)); \
 | |
|         _sse2neon_return(ret);)
 | |
| 
 | |
| #endif
 | |
| 
 | |
| // Concatenate 8-byte blocks in a and b into a 16-byte temporary result, shift
 | |
| // the result right by imm8 bytes, and store the low 8 bytes in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_alignr_pi8
 | |
| #define _mm_alignr_pi8(a, b, imm)                                           \
 | |
|     _sse2neon_define2(                                                      \
 | |
|         __m64, a, b, __m64 ret; if (_sse2neon_unlikely((imm) >= 16)) {      \
 | |
|             ret = vreinterpret_m64_s8(vdup_n_s8(0));                        \
 | |
|         } else {                                                            \
 | |
|             uint8x8_t tmp_low;                                              \
 | |
|             uint8x8_t tmp_high;                                             \
 | |
|             if ((imm) >= 8) {                                               \
 | |
|                 const int idx = (imm) -8;                                   \
 | |
|                 tmp_low = vreinterpret_u8_m64(_a);                          \
 | |
|                 tmp_high = vdup_n_u8(0);                                    \
 | |
|                 ret = vreinterpret_m64_u8(vext_u8(tmp_low, tmp_high, idx)); \
 | |
|             } else {                                                        \
 | |
|                 const int idx = (imm);                                      \
 | |
|                 tmp_low = vreinterpret_u8_m64(_b);                          \
 | |
|                 tmp_high = vreinterpret_u8_m64(_a);                         \
 | |
|                 ret = vreinterpret_m64_u8(vext_u8(tmp_low, tmp_high, idx)); \
 | |
|             }                                                               \
 | |
|         } _sse2neon_return(ret);)
 | |
| 
 | |
| // Horizontally add adjacent pairs of 16-bit integers in a and b, and pack the
 | |
| // signed 16-bit results in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_hadd_epi16
 | |
| FORCE_INLINE __m128i _mm_hadd_epi16(__m128i _a, __m128i _b)
 | |
| {
 | |
|     int16x8_t a = vreinterpretq_s16_m128i(_a);
 | |
|     int16x8_t b = vreinterpretq_s16_m128i(_b);
 | |
| #if defined(__aarch64__) || defined(_M_ARM64)
 | |
|     return vreinterpretq_m128i_s16(vpaddq_s16(a, b));
 | |
| #else
 | |
|     return vreinterpretq_m128i_s16(
 | |
|         vcombine_s16(vpadd_s16(vget_low_s16(a), vget_high_s16(a)),
 | |
|                      vpadd_s16(vget_low_s16(b), vget_high_s16(b))));
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // Horizontally add adjacent pairs of 32-bit integers in a and b, and pack the
 | |
| // signed 32-bit results in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_hadd_epi32
 | |
| FORCE_INLINE __m128i _mm_hadd_epi32(__m128i _a, __m128i _b)
 | |
| {
 | |
|     int32x4_t a = vreinterpretq_s32_m128i(_a);
 | |
|     int32x4_t b = vreinterpretq_s32_m128i(_b);
 | |
| #if defined(__aarch64__) || defined(_M_ARM64)
 | |
|     return vreinterpretq_m128i_s32(vpaddq_s32(a, b));
 | |
| #else
 | |
|     return vreinterpretq_m128i_s32(
 | |
|         vcombine_s32(vpadd_s32(vget_low_s32(a), vget_high_s32(a)),
 | |
|                      vpadd_s32(vget_low_s32(b), vget_high_s32(b))));
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // Horizontally add adjacent pairs of 16-bit integers in a and b, and pack the
 | |
| // signed 16-bit results in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_hadd_pi16
 | |
| FORCE_INLINE __m64 _mm_hadd_pi16(__m64 a, __m64 b)
 | |
| {
 | |
|     return vreinterpret_m64_s16(
 | |
|         vpadd_s16(vreinterpret_s16_m64(a), vreinterpret_s16_m64(b)));
 | |
| }
 | |
| 
 | |
| // Horizontally add adjacent pairs of 32-bit integers in a and b, and pack the
 | |
| // signed 32-bit results in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_hadd_pi32
 | |
| FORCE_INLINE __m64 _mm_hadd_pi32(__m64 a, __m64 b)
 | |
| {
 | |
|     return vreinterpret_m64_s32(
 | |
|         vpadd_s32(vreinterpret_s32_m64(a), vreinterpret_s32_m64(b)));
 | |
| }
 | |
| 
 | |
| // Horizontally add adjacent pairs of signed 16-bit integers in a and b using
 | |
| // saturation, and pack the signed 16-bit results in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_hadds_epi16
 | |
| FORCE_INLINE __m128i _mm_hadds_epi16(__m128i _a, __m128i _b)
 | |
| {
 | |
| #if defined(__aarch64__) || defined(_M_ARM64)
 | |
|     int16x8_t a = vreinterpretq_s16_m128i(_a);
 | |
|     int16x8_t b = vreinterpretq_s16_m128i(_b);
 | |
|     return vreinterpretq_s64_s16(
 | |
|         vqaddq_s16(vuzp1q_s16(a, b), vuzp2q_s16(a, b)));
 | |
| #else
 | |
|     int32x4_t a = vreinterpretq_s32_m128i(_a);
 | |
|     int32x4_t b = vreinterpretq_s32_m128i(_b);
 | |
|     // Interleave using vshrn/vmovn
 | |
|     // [a0|a2|a4|a6|b0|b2|b4|b6]
 | |
|     // [a1|a3|a5|a7|b1|b3|b5|b7]
 | |
|     int16x8_t ab0246 = vcombine_s16(vmovn_s32(a), vmovn_s32(b));
 | |
|     int16x8_t ab1357 = vcombine_s16(vshrn_n_s32(a, 16), vshrn_n_s32(b, 16));
 | |
|     // Saturated add
 | |
|     return vreinterpretq_m128i_s16(vqaddq_s16(ab0246, ab1357));
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // Horizontally add adjacent pairs of signed 16-bit integers in a and b using
 | |
| // saturation, and pack the signed 16-bit results in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_hadds_pi16
 | |
| FORCE_INLINE __m64 _mm_hadds_pi16(__m64 _a, __m64 _b)
 | |
| {
 | |
|     int16x4_t a = vreinterpret_s16_m64(_a);
 | |
|     int16x4_t b = vreinterpret_s16_m64(_b);
 | |
| #if defined(__aarch64__) || defined(_M_ARM64)
 | |
|     return vreinterpret_s64_s16(vqadd_s16(vuzp1_s16(a, b), vuzp2_s16(a, b)));
 | |
| #else
 | |
|     int16x4x2_t res = vuzp_s16(a, b);
 | |
|     return vreinterpret_s64_s16(vqadd_s16(res.val[0], res.val[1]));
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // Horizontally subtract adjacent pairs of 16-bit integers in a and b, and pack
 | |
| // the signed 16-bit results in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_hsub_epi16
 | |
| FORCE_INLINE __m128i _mm_hsub_epi16(__m128i _a, __m128i _b)
 | |
| {
 | |
|     int16x8_t a = vreinterpretq_s16_m128i(_a);
 | |
|     int16x8_t b = vreinterpretq_s16_m128i(_b);
 | |
| #if defined(__aarch64__) || defined(_M_ARM64)
 | |
|     return vreinterpretq_m128i_s16(
 | |
|         vsubq_s16(vuzp1q_s16(a, b), vuzp2q_s16(a, b)));
 | |
| #else
 | |
|     int16x8x2_t c = vuzpq_s16(a, b);
 | |
|     return vreinterpretq_m128i_s16(vsubq_s16(c.val[0], c.val[1]));
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // Horizontally subtract adjacent pairs of 32-bit integers in a and b, and pack
 | |
| // the signed 32-bit results in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_hsub_epi32
 | |
| FORCE_INLINE __m128i _mm_hsub_epi32(__m128i _a, __m128i _b)
 | |
| {
 | |
|     int32x4_t a = vreinterpretq_s32_m128i(_a);
 | |
|     int32x4_t b = vreinterpretq_s32_m128i(_b);
 | |
| #if defined(__aarch64__) || defined(_M_ARM64)
 | |
|     return vreinterpretq_m128i_s32(
 | |
|         vsubq_s32(vuzp1q_s32(a, b), vuzp2q_s32(a, b)));
 | |
| #else
 | |
|     int32x4x2_t c = vuzpq_s32(a, b);
 | |
|     return vreinterpretq_m128i_s32(vsubq_s32(c.val[0], c.val[1]));
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // Horizontally subtract adjacent pairs of 16-bit integers in a and b, and pack
 | |
| // the signed 16-bit results in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_hsub_pi16
 | |
| FORCE_INLINE __m64 _mm_hsub_pi16(__m64 _a, __m64 _b)
 | |
| {
 | |
|     int16x4_t a = vreinterpret_s16_m64(_a);
 | |
|     int16x4_t b = vreinterpret_s16_m64(_b);
 | |
| #if defined(__aarch64__) || defined(_M_ARM64)
 | |
|     return vreinterpret_m64_s16(vsub_s16(vuzp1_s16(a, b), vuzp2_s16(a, b)));
 | |
| #else
 | |
|     int16x4x2_t c = vuzp_s16(a, b);
 | |
|     return vreinterpret_m64_s16(vsub_s16(c.val[0], c.val[1]));
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // Horizontally subtract adjacent pairs of 32-bit integers in a and b, and pack
 | |
| // the signed 32-bit results in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=mm_hsub_pi32
 | |
| FORCE_INLINE __m64 _mm_hsub_pi32(__m64 _a, __m64 _b)
 | |
| {
 | |
|     int32x2_t a = vreinterpret_s32_m64(_a);
 | |
|     int32x2_t b = vreinterpret_s32_m64(_b);
 | |
| #if defined(__aarch64__) || defined(_M_ARM64)
 | |
|     return vreinterpret_m64_s32(vsub_s32(vuzp1_s32(a, b), vuzp2_s32(a, b)));
 | |
| #else
 | |
|     int32x2x2_t c = vuzp_s32(a, b);
 | |
|     return vreinterpret_m64_s32(vsub_s32(c.val[0], c.val[1]));
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // Horizontally subtract adjacent pairs of signed 16-bit integers in a and b
 | |
| // using saturation, and pack the signed 16-bit results in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_hsubs_epi16
 | |
| FORCE_INLINE __m128i _mm_hsubs_epi16(__m128i _a, __m128i _b)
 | |
| {
 | |
|     int16x8_t a = vreinterpretq_s16_m128i(_a);
 | |
|     int16x8_t b = vreinterpretq_s16_m128i(_b);
 | |
| #if defined(__aarch64__) || defined(_M_ARM64)
 | |
|     return vreinterpretq_m128i_s16(
 | |
|         vqsubq_s16(vuzp1q_s16(a, b), vuzp2q_s16(a, b)));
 | |
| #else
 | |
|     int16x8x2_t c = vuzpq_s16(a, b);
 | |
|     return vreinterpretq_m128i_s16(vqsubq_s16(c.val[0], c.val[1]));
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // Horizontally subtract adjacent pairs of signed 16-bit integers in a and b
 | |
| // using saturation, and pack the signed 16-bit results in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_hsubs_pi16
 | |
| FORCE_INLINE __m64 _mm_hsubs_pi16(__m64 _a, __m64 _b)
 | |
| {
 | |
|     int16x4_t a = vreinterpret_s16_m64(_a);
 | |
|     int16x4_t b = vreinterpret_s16_m64(_b);
 | |
| #if defined(__aarch64__) || defined(_M_ARM64)
 | |
|     return vreinterpret_m64_s16(vqsub_s16(vuzp1_s16(a, b), vuzp2_s16(a, b)));
 | |
| #else
 | |
|     int16x4x2_t c = vuzp_s16(a, b);
 | |
|     return vreinterpret_m64_s16(vqsub_s16(c.val[0], c.val[1]));
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // Vertically multiply each unsigned 8-bit integer from a with the corresponding
 | |
| // signed 8-bit integer from b, producing intermediate signed 16-bit integers.
 | |
| // Horizontally add adjacent pairs of intermediate signed 16-bit integers,
 | |
| // and pack the saturated results in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_maddubs_epi16
 | |
| FORCE_INLINE __m128i _mm_maddubs_epi16(__m128i _a, __m128i _b)
 | |
| {
 | |
| #if defined(__aarch64__) || defined(_M_ARM64)
 | |
|     uint8x16_t a = vreinterpretq_u8_m128i(_a);
 | |
|     int8x16_t b = vreinterpretq_s8_m128i(_b);
 | |
|     int16x8_t tl = vmulq_s16(vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(a))),
 | |
|                              vmovl_s8(vget_low_s8(b)));
 | |
|     int16x8_t th = vmulq_s16(vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(a))),
 | |
|                              vmovl_s8(vget_high_s8(b)));
 | |
|     return vreinterpretq_m128i_s16(
 | |
|         vqaddq_s16(vuzp1q_s16(tl, th), vuzp2q_s16(tl, th)));
 | |
| #else
 | |
|     // This would be much simpler if x86 would choose to zero extend OR sign
 | |
|     // extend, not both. This could probably be optimized better.
 | |
|     uint16x8_t a = vreinterpretq_u16_m128i(_a);
 | |
|     int16x8_t b = vreinterpretq_s16_m128i(_b);
 | |
| 
 | |
|     // Zero extend a
 | |
|     int16x8_t a_odd = vreinterpretq_s16_u16(vshrq_n_u16(a, 8));
 | |
|     int16x8_t a_even = vreinterpretq_s16_u16(vbicq_u16(a, vdupq_n_u16(0xff00)));
 | |
| 
 | |
|     // Sign extend by shifting left then shifting right.
 | |
|     int16x8_t b_even = vshrq_n_s16(vshlq_n_s16(b, 8), 8);
 | |
|     int16x8_t b_odd = vshrq_n_s16(b, 8);
 | |
| 
 | |
|     // multiply
 | |
|     int16x8_t prod1 = vmulq_s16(a_even, b_even);
 | |
|     int16x8_t prod2 = vmulq_s16(a_odd, b_odd);
 | |
| 
 | |
|     // saturated add
 | |
|     return vreinterpretq_m128i_s16(vqaddq_s16(prod1, prod2));
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // Vertically multiply each unsigned 8-bit integer from a with the corresponding
 | |
| // signed 8-bit integer from b, producing intermediate signed 16-bit integers.
 | |
| // Horizontally add adjacent pairs of intermediate signed 16-bit integers, and
 | |
| // pack the saturated results in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_maddubs_pi16
 | |
| FORCE_INLINE __m64 _mm_maddubs_pi16(__m64 _a, __m64 _b)
 | |
| {
 | |
|     uint16x4_t a = vreinterpret_u16_m64(_a);
 | |
|     int16x4_t b = vreinterpret_s16_m64(_b);
 | |
| 
 | |
|     // Zero extend a
 | |
|     int16x4_t a_odd = vreinterpret_s16_u16(vshr_n_u16(a, 8));
 | |
|     int16x4_t a_even = vreinterpret_s16_u16(vand_u16(a, vdup_n_u16(0xff)));
 | |
| 
 | |
|     // Sign extend by shifting left then shifting right.
 | |
|     int16x4_t b_even = vshr_n_s16(vshl_n_s16(b, 8), 8);
 | |
|     int16x4_t b_odd = vshr_n_s16(b, 8);
 | |
| 
 | |
|     // multiply
 | |
|     int16x4_t prod1 = vmul_s16(a_even, b_even);
 | |
|     int16x4_t prod2 = vmul_s16(a_odd, b_odd);
 | |
| 
 | |
|     // saturated add
 | |
|     return vreinterpret_m64_s16(vqadd_s16(prod1, prod2));
 | |
| }
 | |
| 
 | |
| // Multiply packed signed 16-bit integers in a and b, producing intermediate
 | |
| // signed 32-bit integers. Shift right by 15 bits while rounding up, and store
 | |
| // the packed 16-bit integers in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mulhrs_epi16
 | |
| FORCE_INLINE __m128i _mm_mulhrs_epi16(__m128i a, __m128i b)
 | |
| {
 | |
|     // Has issues due to saturation
 | |
|     // return vreinterpretq_m128i_s16(vqrdmulhq_s16(a, b));
 | |
| 
 | |
|     // Multiply
 | |
|     int32x4_t mul_lo = vmull_s16(vget_low_s16(vreinterpretq_s16_m128i(a)),
 | |
|                                  vget_low_s16(vreinterpretq_s16_m128i(b)));
 | |
|     int32x4_t mul_hi = vmull_s16(vget_high_s16(vreinterpretq_s16_m128i(a)),
 | |
|                                  vget_high_s16(vreinterpretq_s16_m128i(b)));
 | |
| 
 | |
|     // Rounding narrowing shift right
 | |
|     // narrow = (int16_t)((mul + 16384) >> 15);
 | |
|     int16x4_t narrow_lo = vrshrn_n_s32(mul_lo, 15);
 | |
|     int16x4_t narrow_hi = vrshrn_n_s32(mul_hi, 15);
 | |
| 
 | |
|     // Join together
 | |
|     return vreinterpretq_m128i_s16(vcombine_s16(narrow_lo, narrow_hi));
 | |
| }
 | |
| 
 | |
| // Multiply packed signed 16-bit integers in a and b, producing intermediate
 | |
| // signed 32-bit integers. Truncate each intermediate integer to the 18 most
 | |
| // significant bits, round by adding 1, and store bits [16:1] to dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mulhrs_pi16
 | |
| FORCE_INLINE __m64 _mm_mulhrs_pi16(__m64 a, __m64 b)
 | |
| {
 | |
|     int32x4_t mul_extend =
 | |
|         vmull_s16((vreinterpret_s16_m64(a)), (vreinterpret_s16_m64(b)));
 | |
| 
 | |
|     // Rounding narrowing shift right
 | |
|     return vreinterpret_m64_s16(vrshrn_n_s32(mul_extend, 15));
 | |
| }
 | |
| 
 | |
| // Shuffle packed 8-bit integers in a according to shuffle control mask in the
 | |
| // corresponding 8-bit element of b, and store the results in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_shuffle_epi8
 | |
| FORCE_INLINE __m128i _mm_shuffle_epi8(__m128i a, __m128i b)
 | |
| {
 | |
|     int8x16_t tbl = vreinterpretq_s8_m128i(a);   // input a
 | |
|     uint8x16_t idx = vreinterpretq_u8_m128i(b);  // input b
 | |
|     uint8x16_t idx_masked =
 | |
|         vandq_u8(idx, vdupq_n_u8(0x8F));  // avoid using meaningless bits
 | |
| #if defined(__aarch64__) || defined(_M_ARM64)
 | |
|     return vreinterpretq_m128i_s8(vqtbl1q_s8(tbl, idx_masked));
 | |
| #elif defined(__GNUC__)
 | |
|     int8x16_t ret;
 | |
|     // %e and %f represent the even and odd D registers
 | |
|     // respectively.
 | |
|     __asm__ __volatile__(
 | |
|         "vtbl.8  %e[ret], {%e[tbl], %f[tbl]}, %e[idx]\n"
 | |
|         "vtbl.8  %f[ret], {%e[tbl], %f[tbl]}, %f[idx]\n"
 | |
|         : [ret] "=&w"(ret)
 | |
|         : [tbl] "w"(tbl), [idx] "w"(idx_masked));
 | |
|     return vreinterpretq_m128i_s8(ret);
 | |
| #else
 | |
|     // use this line if testing on aarch64
 | |
|     int8x8x2_t a_split = {vget_low_s8(tbl), vget_high_s8(tbl)};
 | |
|     return vreinterpretq_m128i_s8(
 | |
|         vcombine_s8(vtbl2_s8(a_split, vget_low_u8(idx_masked)),
 | |
|                     vtbl2_s8(a_split, vget_high_u8(idx_masked))));
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // Shuffle packed 8-bit integers in a according to shuffle control mask in the
 | |
| // corresponding 8-bit element of b, and store the results in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_shuffle_pi8
 | |
| FORCE_INLINE __m64 _mm_shuffle_pi8(__m64 a, __m64 b)
 | |
| {
 | |
|     const int8x8_t controlMask =
 | |
|         vand_s8(vreinterpret_s8_m64(b), vdup_n_s8((int8_t) (0x1 << 7 | 0x07)));
 | |
|     int8x8_t res = vtbl1_s8(vreinterpret_s8_m64(a), controlMask);
 | |
|     return vreinterpret_m64_s8(res);
 | |
| }
 | |
| 
 | |
| // Negate packed 16-bit integers in a when the corresponding signed
 | |
| // 16-bit integer in b is negative, and store the results in dst.
 | |
| // Element in dst are zeroed out when the corresponding element
 | |
| // in b is zero.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sign_epi16
 | |
| FORCE_INLINE __m128i _mm_sign_epi16(__m128i _a, __m128i _b)
 | |
| {
 | |
|     int16x8_t a = vreinterpretq_s16_m128i(_a);
 | |
|     int16x8_t b = vreinterpretq_s16_m128i(_b);
 | |
| 
 | |
|     // signed shift right: faster than vclt
 | |
|     // (b < 0) ? 0xFFFF : 0
 | |
|     uint16x8_t ltMask = vreinterpretq_u16_s16(vshrq_n_s16(b, 15));
 | |
|     // (b == 0) ? 0xFFFF : 0
 | |
| #if defined(__aarch64__) || defined(_M_ARM64)
 | |
|     int16x8_t zeroMask = vreinterpretq_s16_u16(vceqzq_s16(b));
 | |
| #else
 | |
|     int16x8_t zeroMask = vreinterpretq_s16_u16(vceqq_s16(b, vdupq_n_s16(0)));
 | |
| #endif
 | |
| 
 | |
|     // bitwise select either a or negative 'a' (vnegq_s16(a) equals to negative
 | |
|     // 'a') based on ltMask
 | |
|     int16x8_t masked = vbslq_s16(ltMask, vnegq_s16(a), a);
 | |
|     // res = masked & (~zeroMask)
 | |
|     int16x8_t res = vbicq_s16(masked, zeroMask);
 | |
|     return vreinterpretq_m128i_s16(res);
 | |
| }
 | |
| 
 | |
| // Negate packed 32-bit integers in a when the corresponding signed
 | |
| // 32-bit integer in b is negative, and store the results in dst.
 | |
| // Element in dst are zeroed out when the corresponding element
 | |
| // in b is zero.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sign_epi32
 | |
| FORCE_INLINE __m128i _mm_sign_epi32(__m128i _a, __m128i _b)
 | |
| {
 | |
|     int32x4_t a = vreinterpretq_s32_m128i(_a);
 | |
|     int32x4_t b = vreinterpretq_s32_m128i(_b);
 | |
| 
 | |
|     // signed shift right: faster than vclt
 | |
|     // (b < 0) ? 0xFFFFFFFF : 0
 | |
|     uint32x4_t ltMask = vreinterpretq_u32_s32(vshrq_n_s32(b, 31));
 | |
| 
 | |
|     // (b == 0) ? 0xFFFFFFFF : 0
 | |
| #if defined(__aarch64__) || defined(_M_ARM64)
 | |
|     int32x4_t zeroMask = vreinterpretq_s32_u32(vceqzq_s32(b));
 | |
| #else
 | |
|     int32x4_t zeroMask = vreinterpretq_s32_u32(vceqq_s32(b, vdupq_n_s32(0)));
 | |
| #endif
 | |
| 
 | |
|     // bitwise select either a or negative 'a' (vnegq_s32(a) equals to negative
 | |
|     // 'a') based on ltMask
 | |
|     int32x4_t masked = vbslq_s32(ltMask, vnegq_s32(a), a);
 | |
|     // res = masked & (~zeroMask)
 | |
|     int32x4_t res = vbicq_s32(masked, zeroMask);
 | |
|     return vreinterpretq_m128i_s32(res);
 | |
| }
 | |
| 
 | |
| // Negate packed 8-bit integers in a when the corresponding signed
 | |
| // 8-bit integer in b is negative, and store the results in dst.
 | |
| // Element in dst are zeroed out when the corresponding element
 | |
| // in b is zero.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sign_epi8
 | |
| FORCE_INLINE __m128i _mm_sign_epi8(__m128i _a, __m128i _b)
 | |
| {
 | |
|     int8x16_t a = vreinterpretq_s8_m128i(_a);
 | |
|     int8x16_t b = vreinterpretq_s8_m128i(_b);
 | |
| 
 | |
|     // signed shift right: faster than vclt
 | |
|     // (b < 0) ? 0xFF : 0
 | |
|     uint8x16_t ltMask = vreinterpretq_u8_s8(vshrq_n_s8(b, 7));
 | |
| 
 | |
|     // (b == 0) ? 0xFF : 0
 | |
| #if defined(__aarch64__) || defined(_M_ARM64)
 | |
|     int8x16_t zeroMask = vreinterpretq_s8_u8(vceqzq_s8(b));
 | |
| #else
 | |
|     int8x16_t zeroMask = vreinterpretq_s8_u8(vceqq_s8(b, vdupq_n_s8(0)));
 | |
| #endif
 | |
| 
 | |
|     // bitwise select either a or negative 'a' (vnegq_s8(a) return negative 'a')
 | |
|     // based on ltMask
 | |
|     int8x16_t masked = vbslq_s8(ltMask, vnegq_s8(a), a);
 | |
|     // res = masked & (~zeroMask)
 | |
|     int8x16_t res = vbicq_s8(masked, zeroMask);
 | |
| 
 | |
|     return vreinterpretq_m128i_s8(res);
 | |
| }
 | |
| 
 | |
| // Negate packed 16-bit integers in a when the corresponding signed 16-bit
 | |
| // integer in b is negative, and store the results in dst. Element in dst are
 | |
| // zeroed out when the corresponding element in b is zero.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sign_pi16
 | |
| FORCE_INLINE __m64 _mm_sign_pi16(__m64 _a, __m64 _b)
 | |
| {
 | |
|     int16x4_t a = vreinterpret_s16_m64(_a);
 | |
|     int16x4_t b = vreinterpret_s16_m64(_b);
 | |
| 
 | |
|     // signed shift right: faster than vclt
 | |
|     // (b < 0) ? 0xFFFF : 0
 | |
|     uint16x4_t ltMask = vreinterpret_u16_s16(vshr_n_s16(b, 15));
 | |
| 
 | |
|     // (b == 0) ? 0xFFFF : 0
 | |
| #if defined(__aarch64__) || defined(_M_ARM64)
 | |
|     int16x4_t zeroMask = vreinterpret_s16_u16(vceqz_s16(b));
 | |
| #else
 | |
|     int16x4_t zeroMask = vreinterpret_s16_u16(vceq_s16(b, vdup_n_s16(0)));
 | |
| #endif
 | |
| 
 | |
|     // bitwise select either a or negative 'a' (vneg_s16(a) return negative 'a')
 | |
|     // based on ltMask
 | |
|     int16x4_t masked = vbsl_s16(ltMask, vneg_s16(a), a);
 | |
|     // res = masked & (~zeroMask)
 | |
|     int16x4_t res = vbic_s16(masked, zeroMask);
 | |
| 
 | |
|     return vreinterpret_m64_s16(res);
 | |
| }
 | |
| 
 | |
| // Negate packed 32-bit integers in a when the corresponding signed 32-bit
 | |
| // integer in b is negative, and store the results in dst. Element in dst are
 | |
| // zeroed out when the corresponding element in b is zero.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sign_pi32
 | |
| FORCE_INLINE __m64 _mm_sign_pi32(__m64 _a, __m64 _b)
 | |
| {
 | |
|     int32x2_t a = vreinterpret_s32_m64(_a);
 | |
|     int32x2_t b = vreinterpret_s32_m64(_b);
 | |
| 
 | |
|     // signed shift right: faster than vclt
 | |
|     // (b < 0) ? 0xFFFFFFFF : 0
 | |
|     uint32x2_t ltMask = vreinterpret_u32_s32(vshr_n_s32(b, 31));
 | |
| 
 | |
|     // (b == 0) ? 0xFFFFFFFF : 0
 | |
| #if defined(__aarch64__) || defined(_M_ARM64)
 | |
|     int32x2_t zeroMask = vreinterpret_s32_u32(vceqz_s32(b));
 | |
| #else
 | |
|     int32x2_t zeroMask = vreinterpret_s32_u32(vceq_s32(b, vdup_n_s32(0)));
 | |
| #endif
 | |
| 
 | |
|     // bitwise select either a or negative 'a' (vneg_s32(a) return negative 'a')
 | |
|     // based on ltMask
 | |
|     int32x2_t masked = vbsl_s32(ltMask, vneg_s32(a), a);
 | |
|     // res = masked & (~zeroMask)
 | |
|     int32x2_t res = vbic_s32(masked, zeroMask);
 | |
| 
 | |
|     return vreinterpret_m64_s32(res);
 | |
| }
 | |
| 
 | |
| // Negate packed 8-bit integers in a when the corresponding signed 8-bit integer
 | |
| // in b is negative, and store the results in dst. Element in dst are zeroed out
 | |
| // when the corresponding element in b is zero.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sign_pi8
 | |
| FORCE_INLINE __m64 _mm_sign_pi8(__m64 _a, __m64 _b)
 | |
| {
 | |
|     int8x8_t a = vreinterpret_s8_m64(_a);
 | |
|     int8x8_t b = vreinterpret_s8_m64(_b);
 | |
| 
 | |
|     // signed shift right: faster than vclt
 | |
|     // (b < 0) ? 0xFF : 0
 | |
|     uint8x8_t ltMask = vreinterpret_u8_s8(vshr_n_s8(b, 7));
 | |
| 
 | |
|     // (b == 0) ? 0xFF : 0
 | |
| #if defined(__aarch64__) || defined(_M_ARM64)
 | |
|     int8x8_t zeroMask = vreinterpret_s8_u8(vceqz_s8(b));
 | |
| #else
 | |
|     int8x8_t zeroMask = vreinterpret_s8_u8(vceq_s8(b, vdup_n_s8(0)));
 | |
| #endif
 | |
| 
 | |
|     // bitwise select either a or negative 'a' (vneg_s8(a) return negative 'a')
 | |
|     // based on ltMask
 | |
|     int8x8_t masked = vbsl_s8(ltMask, vneg_s8(a), a);
 | |
|     // res = masked & (~zeroMask)
 | |
|     int8x8_t res = vbic_s8(masked, zeroMask);
 | |
| 
 | |
|     return vreinterpret_m64_s8(res);
 | |
| }
 | |
| 
 | |
| /* SSE4.1 */
 | |
| 
 | |
| // Blend packed 16-bit integers from a and b using control mask imm8, and store
 | |
| // the results in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_blend_epi16
 | |
| // FORCE_INLINE __m128i _mm_blend_epi16(__m128i a, __m128i b,
 | |
| //                                      __constrange(0,255) int imm)
 | |
| #define _mm_blend_epi16(a, b, imm)                                      \
 | |
|     _sse2neon_define2(                                                  \
 | |
|         __m128i, a, b,                                                  \
 | |
|         const uint16_t _mask[8] =                                       \
 | |
|             _sse2neon_init(((imm) & (1 << 0)) ? (uint16_t) -1 : 0x0,    \
 | |
|                            ((imm) & (1 << 1)) ? (uint16_t) -1 : 0x0,    \
 | |
|                            ((imm) & (1 << 2)) ? (uint16_t) -1 : 0x0,    \
 | |
|                            ((imm) & (1 << 3)) ? (uint16_t) -1 : 0x0,    \
 | |
|                            ((imm) & (1 << 4)) ? (uint16_t) -1 : 0x0,    \
 | |
|                            ((imm) & (1 << 5)) ? (uint16_t) -1 : 0x0,    \
 | |
|                            ((imm) & (1 << 6)) ? (uint16_t) -1 : 0x0,    \
 | |
|                            ((imm) & (1 << 7)) ? (uint16_t) -1 : 0x0);   \
 | |
|         uint16x8_t _mask_vec = vld1q_u16(_mask);                        \
 | |
|         uint16x8_t __a = vreinterpretq_u16_m128i(_a);                   \
 | |
|         uint16x8_t __b = vreinterpretq_u16_m128i(_b); _sse2neon_return( \
 | |
|             vreinterpretq_m128i_u16(vbslq_u16(_mask_vec, __b, __a)));)
 | |
| 
 | |
| // Blend packed double-precision (64-bit) floating-point elements from a and b
 | |
| // using control mask imm8, and store the results in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_blend_pd
 | |
| #define _mm_blend_pd(a, b, imm)                                              \
 | |
|     _sse2neon_define2(                                                       \
 | |
|         __m128d, a, b,                                                       \
 | |
|         const uint64_t _mask[2] =                                            \
 | |
|             _sse2neon_init(((imm) & (1 << 0)) ? ~UINT64_C(0) : UINT64_C(0),  \
 | |
|                            ((imm) & (1 << 1)) ? ~UINT64_C(0) : UINT64_C(0)); \
 | |
|         uint64x2_t _mask_vec = vld1q_u64(_mask);                             \
 | |
|         uint64x2_t __a = vreinterpretq_u64_m128d(_a);                        \
 | |
|         uint64x2_t __b = vreinterpretq_u64_m128d(_b); _sse2neon_return(      \
 | |
|             vreinterpretq_m128d_u64(vbslq_u64(_mask_vec, __b, __a)));)
 | |
| 
 | |
| // Blend packed single-precision (32-bit) floating-point elements from a and b
 | |
| // using mask, and store the results in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_blend_ps
 | |
| FORCE_INLINE __m128 _mm_blend_ps(__m128 _a, __m128 _b, const char imm8)
 | |
| {
 | |
|     const uint32_t ALIGN_STRUCT(16)
 | |
|         data[4] = {((imm8) & (1 << 0)) ? UINT32_MAX : 0,
 | |
|                    ((imm8) & (1 << 1)) ? UINT32_MAX : 0,
 | |
|                    ((imm8) & (1 << 2)) ? UINT32_MAX : 0,
 | |
|                    ((imm8) & (1 << 3)) ? UINT32_MAX : 0};
 | |
|     uint32x4_t mask = vld1q_u32(data);
 | |
|     float32x4_t a = vreinterpretq_f32_m128(_a);
 | |
|     float32x4_t b = vreinterpretq_f32_m128(_b);
 | |
|     return vreinterpretq_m128_f32(vbslq_f32(mask, b, a));
 | |
| }
 | |
| 
 | |
| // Blend packed 8-bit integers from a and b using mask, and store the results in
 | |
| // dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_blendv_epi8
 | |
| FORCE_INLINE __m128i _mm_blendv_epi8(__m128i _a, __m128i _b, __m128i _mask)
 | |
| {
 | |
|     // Use a signed shift right to create a mask with the sign bit
 | |
|     uint8x16_t mask =
 | |
|         vreinterpretq_u8_s8(vshrq_n_s8(vreinterpretq_s8_m128i(_mask), 7));
 | |
|     uint8x16_t a = vreinterpretq_u8_m128i(_a);
 | |
|     uint8x16_t b = vreinterpretq_u8_m128i(_b);
 | |
|     return vreinterpretq_m128i_u8(vbslq_u8(mask, b, a));
 | |
| }
 | |
| 
 | |
| // Blend packed double-precision (64-bit) floating-point elements from a and b
 | |
| // using mask, and store the results in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_blendv_pd
 | |
| FORCE_INLINE __m128d _mm_blendv_pd(__m128d _a, __m128d _b, __m128d _mask)
 | |
| {
 | |
|     uint64x2_t mask =
 | |
|         vreinterpretq_u64_s64(vshrq_n_s64(vreinterpretq_s64_m128d(_mask), 63));
 | |
| #if defined(__aarch64__) || defined(_M_ARM64)
 | |
|     float64x2_t a = vreinterpretq_f64_m128d(_a);
 | |
|     float64x2_t b = vreinterpretq_f64_m128d(_b);
 | |
|     return vreinterpretq_m128d_f64(vbslq_f64(mask, b, a));
 | |
| #else
 | |
|     uint64x2_t a = vreinterpretq_u64_m128d(_a);
 | |
|     uint64x2_t b = vreinterpretq_u64_m128d(_b);
 | |
|     return vreinterpretq_m128d_u64(vbslq_u64(mask, b, a));
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // Blend packed single-precision (32-bit) floating-point elements from a and b
 | |
| // using mask, and store the results in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_blendv_ps
 | |
| FORCE_INLINE __m128 _mm_blendv_ps(__m128 _a, __m128 _b, __m128 _mask)
 | |
| {
 | |
|     // Use a signed shift right to create a mask with the sign bit
 | |
|     uint32x4_t mask =
 | |
|         vreinterpretq_u32_s32(vshrq_n_s32(vreinterpretq_s32_m128(_mask), 31));
 | |
|     float32x4_t a = vreinterpretq_f32_m128(_a);
 | |
|     float32x4_t b = vreinterpretq_f32_m128(_b);
 | |
|     return vreinterpretq_m128_f32(vbslq_f32(mask, b, a));
 | |
| }
 | |
| 
 | |
| // Round the packed double-precision (64-bit) floating-point elements in a up
 | |
| // to an integer value, and store the results as packed double-precision
 | |
| // floating-point elements in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_ceil_pd
 | |
| FORCE_INLINE __m128d _mm_ceil_pd(__m128d a)
 | |
| {
 | |
| #if defined(__aarch64__) || defined(_M_ARM64)
 | |
|     return vreinterpretq_m128d_f64(vrndpq_f64(vreinterpretq_f64_m128d(a)));
 | |
| #else
 | |
|     double *f = (double *) &a;
 | |
|     return _mm_set_pd(ceil(f[1]), ceil(f[0]));
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // Round the packed single-precision (32-bit) floating-point elements in a up to
 | |
| // an integer value, and store the results as packed single-precision
 | |
| // floating-point elements in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_ceil_ps
 | |
| FORCE_INLINE __m128 _mm_ceil_ps(__m128 a)
 | |
| {
 | |
| #if (defined(__aarch64__) || defined(_M_ARM64)) || \
 | |
|     defined(__ARM_FEATURE_DIRECTED_ROUNDING)
 | |
|     return vreinterpretq_m128_f32(vrndpq_f32(vreinterpretq_f32_m128(a)));
 | |
| #else
 | |
|     float *f = (float *) &a;
 | |
|     return _mm_set_ps(ceilf(f[3]), ceilf(f[2]), ceilf(f[1]), ceilf(f[0]));
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // Round the lower double-precision (64-bit) floating-point element in b up to
 | |
| // an integer value, store the result as a double-precision floating-point
 | |
| // element in the lower element of dst, and copy the upper element from a to the
 | |
| // upper element of dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_ceil_sd
 | |
| FORCE_INLINE __m128d _mm_ceil_sd(__m128d a, __m128d b)
 | |
| {
 | |
|     return _mm_move_sd(a, _mm_ceil_pd(b));
 | |
| }
 | |
| 
 | |
| // Round the lower single-precision (32-bit) floating-point element in b up to
 | |
| // an integer value, store the result as a single-precision floating-point
 | |
| // element in the lower element of dst, and copy the upper 3 packed elements
 | |
| // from a to the upper elements of dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_ceil_ss
 | |
| FORCE_INLINE __m128 _mm_ceil_ss(__m128 a, __m128 b)
 | |
| {
 | |
|     return _mm_move_ss(a, _mm_ceil_ps(b));
 | |
| }
 | |
| 
 | |
| // Compare packed 64-bit integers in a and b for equality, and store the results
 | |
| // in dst
 | |
| FORCE_INLINE __m128i _mm_cmpeq_epi64(__m128i a, __m128i b)
 | |
| {
 | |
| #if defined(__aarch64__) || defined(_M_ARM64)
 | |
|     return vreinterpretq_m128i_u64(
 | |
|         vceqq_u64(vreinterpretq_u64_m128i(a), vreinterpretq_u64_m128i(b)));
 | |
| #else
 | |
|     // ARMv7 lacks vceqq_u64
 | |
|     // (a == b) -> (a_lo == b_lo) && (a_hi == b_hi)
 | |
|     uint32x4_t cmp =
 | |
|         vceqq_u32(vreinterpretq_u32_m128i(a), vreinterpretq_u32_m128i(b));
 | |
|     uint32x4_t swapped = vrev64q_u32(cmp);
 | |
|     return vreinterpretq_m128i_u32(vandq_u32(cmp, swapped));
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // Sign extend packed 16-bit integers in a to packed 32-bit integers, and store
 | |
| // the results in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtepi16_epi32
 | |
| FORCE_INLINE __m128i _mm_cvtepi16_epi32(__m128i a)
 | |
| {
 | |
|     return vreinterpretq_m128i_s32(
 | |
|         vmovl_s16(vget_low_s16(vreinterpretq_s16_m128i(a))));
 | |
| }
 | |
| 
 | |
| // Sign extend packed 16-bit integers in a to packed 64-bit integers, and store
 | |
| // the results in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtepi16_epi64
 | |
| FORCE_INLINE __m128i _mm_cvtepi16_epi64(__m128i a)
 | |
| {
 | |
|     int16x8_t s16x8 = vreinterpretq_s16_m128i(a);     /* xxxx xxxx xxxx 0B0A */
 | |
|     int32x4_t s32x4 = vmovl_s16(vget_low_s16(s16x8)); /* 000x 000x 000B 000A */
 | |
|     int64x2_t s64x2 = vmovl_s32(vget_low_s32(s32x4)); /* 0000 000B 0000 000A */
 | |
|     return vreinterpretq_m128i_s64(s64x2);
 | |
| }
 | |
| 
 | |
| // Sign extend packed 32-bit integers in a to packed 64-bit integers, and store
 | |
| // the results in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtepi32_epi64
 | |
| FORCE_INLINE __m128i _mm_cvtepi32_epi64(__m128i a)
 | |
| {
 | |
|     return vreinterpretq_m128i_s64(
 | |
|         vmovl_s32(vget_low_s32(vreinterpretq_s32_m128i(a))));
 | |
| }
 | |
| 
 | |
| // Sign extend packed 8-bit integers in a to packed 16-bit integers, and store
 | |
| // the results in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtepi8_epi16
 | |
| FORCE_INLINE __m128i _mm_cvtepi8_epi16(__m128i a)
 | |
| {
 | |
|     int8x16_t s8x16 = vreinterpretq_s8_m128i(a);    /* xxxx xxxx xxxx DCBA */
 | |
|     int16x8_t s16x8 = vmovl_s8(vget_low_s8(s8x16)); /* 0x0x 0x0x 0D0C 0B0A */
 | |
|     return vreinterpretq_m128i_s16(s16x8);
 | |
| }
 | |
| 
 | |
| // Sign extend packed 8-bit integers in a to packed 32-bit integers, and store
 | |
| // the results in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtepi8_epi32
 | |
| FORCE_INLINE __m128i _mm_cvtepi8_epi32(__m128i a)
 | |
| {
 | |
|     int8x16_t s8x16 = vreinterpretq_s8_m128i(a);      /* xxxx xxxx xxxx DCBA */
 | |
|     int16x8_t s16x8 = vmovl_s8(vget_low_s8(s8x16));   /* 0x0x 0x0x 0D0C 0B0A */
 | |
|     int32x4_t s32x4 = vmovl_s16(vget_low_s16(s16x8)); /* 000D 000C 000B 000A */
 | |
|     return vreinterpretq_m128i_s32(s32x4);
 | |
| }
 | |
| 
 | |
| // Sign extend packed 8-bit integers in the low 8 bytes of a to packed 64-bit
 | |
| // integers, and store the results in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtepi8_epi64
 | |
| FORCE_INLINE __m128i _mm_cvtepi8_epi64(__m128i a)
 | |
| {
 | |
|     int8x16_t s8x16 = vreinterpretq_s8_m128i(a);      /* xxxx xxxx xxxx xxBA */
 | |
|     int16x8_t s16x8 = vmovl_s8(vget_low_s8(s8x16));   /* 0x0x 0x0x 0x0x 0B0A */
 | |
|     int32x4_t s32x4 = vmovl_s16(vget_low_s16(s16x8)); /* 000x 000x 000B 000A */
 | |
|     int64x2_t s64x2 = vmovl_s32(vget_low_s32(s32x4)); /* 0000 000B 0000 000A */
 | |
|     return vreinterpretq_m128i_s64(s64x2);
 | |
| }
 | |
| 
 | |
| // Zero extend packed unsigned 16-bit integers in a to packed 32-bit integers,
 | |
| // and store the results in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtepu16_epi32
 | |
| FORCE_INLINE __m128i _mm_cvtepu16_epi32(__m128i a)
 | |
| {
 | |
|     return vreinterpretq_m128i_u32(
 | |
|         vmovl_u16(vget_low_u16(vreinterpretq_u16_m128i(a))));
 | |
| }
 | |
| 
 | |
| // Zero extend packed unsigned 16-bit integers in a to packed 64-bit integers,
 | |
| // and store the results in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtepu16_epi64
 | |
| FORCE_INLINE __m128i _mm_cvtepu16_epi64(__m128i a)
 | |
| {
 | |
|     uint16x8_t u16x8 = vreinterpretq_u16_m128i(a);     /* xxxx xxxx xxxx 0B0A */
 | |
|     uint32x4_t u32x4 = vmovl_u16(vget_low_u16(u16x8)); /* 000x 000x 000B 000A */
 | |
|     uint64x2_t u64x2 = vmovl_u32(vget_low_u32(u32x4)); /* 0000 000B 0000 000A */
 | |
|     return vreinterpretq_m128i_u64(u64x2);
 | |
| }
 | |
| 
 | |
| // Zero extend packed unsigned 32-bit integers in a to packed 64-bit integers,
 | |
| // and store the results in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtepu32_epi64
 | |
| FORCE_INLINE __m128i _mm_cvtepu32_epi64(__m128i a)
 | |
| {
 | |
|     return vreinterpretq_m128i_u64(
 | |
|         vmovl_u32(vget_low_u32(vreinterpretq_u32_m128i(a))));
 | |
| }
 | |
| 
 | |
| // Zero extend packed unsigned 8-bit integers in a to packed 16-bit integers,
 | |
| // and store the results in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtepu8_epi16
 | |
| FORCE_INLINE __m128i _mm_cvtepu8_epi16(__m128i a)
 | |
| {
 | |
|     uint8x16_t u8x16 = vreinterpretq_u8_m128i(a);    /* xxxx xxxx HGFE DCBA */
 | |
|     uint16x8_t u16x8 = vmovl_u8(vget_low_u8(u8x16)); /* 0H0G 0F0E 0D0C 0B0A */
 | |
|     return vreinterpretq_m128i_u16(u16x8);
 | |
| }
 | |
| 
 | |
| // Zero extend packed unsigned 8-bit integers in a to packed 32-bit integers,
 | |
| // and store the results in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtepu8_epi32
 | |
| FORCE_INLINE __m128i _mm_cvtepu8_epi32(__m128i a)
 | |
| {
 | |
|     uint8x16_t u8x16 = vreinterpretq_u8_m128i(a);      /* xxxx xxxx xxxx DCBA */
 | |
|     uint16x8_t u16x8 = vmovl_u8(vget_low_u8(u8x16));   /* 0x0x 0x0x 0D0C 0B0A */
 | |
|     uint32x4_t u32x4 = vmovl_u16(vget_low_u16(u16x8)); /* 000D 000C 000B 000A */
 | |
|     return vreinterpretq_m128i_u32(u32x4);
 | |
| }
 | |
| 
 | |
| // Zero extend packed unsigned 8-bit integers in the low 8 bytes of a to packed
 | |
| // 64-bit integers, and store the results in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtepu8_epi64
 | |
| FORCE_INLINE __m128i _mm_cvtepu8_epi64(__m128i a)
 | |
| {
 | |
|     uint8x16_t u8x16 = vreinterpretq_u8_m128i(a);      /* xxxx xxxx xxxx xxBA */
 | |
|     uint16x8_t u16x8 = vmovl_u8(vget_low_u8(u8x16));   /* 0x0x 0x0x 0x0x 0B0A */
 | |
|     uint32x4_t u32x4 = vmovl_u16(vget_low_u16(u16x8)); /* 000x 000x 000B 000A */
 | |
|     uint64x2_t u64x2 = vmovl_u32(vget_low_u32(u32x4)); /* 0000 000B 0000 000A */
 | |
|     return vreinterpretq_m128i_u64(u64x2);
 | |
| }
 | |
| 
 | |
| // Conditionally multiply the packed double-precision (64-bit) floating-point
 | |
| // elements in a and b using the high 4 bits in imm8, sum the four products, and
 | |
| // conditionally store the sum in dst using the low 4 bits of imm8.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_dp_pd
 | |
| FORCE_INLINE __m128d _mm_dp_pd(__m128d a, __m128d b, const int imm)
 | |
| {
 | |
|     // Generate mask value from constant immediate bit value
 | |
|     const int64_t bit0Mask = imm & 0x01 ? UINT64_MAX : 0;
 | |
|     const int64_t bit1Mask = imm & 0x02 ? UINT64_MAX : 0;
 | |
| #if !SSE2NEON_PRECISE_DP
 | |
|     const int64_t bit4Mask = imm & 0x10 ? UINT64_MAX : 0;
 | |
|     const int64_t bit5Mask = imm & 0x20 ? UINT64_MAX : 0;
 | |
| #endif
 | |
|     // Conditional multiplication
 | |
| #if !SSE2NEON_PRECISE_DP
 | |
|     __m128d mul = _mm_mul_pd(a, b);
 | |
|     const __m128d mulMask =
 | |
|         _mm_castsi128_pd(_mm_set_epi64x(bit5Mask, bit4Mask));
 | |
|     __m128d tmp = _mm_and_pd(mul, mulMask);
 | |
| #else
 | |
| #if defined(__aarch64__) || defined(_M_ARM64)
 | |
|     double d0 = (imm & 0x10) ? vgetq_lane_f64(vreinterpretq_f64_m128d(a), 0) *
 | |
|                                    vgetq_lane_f64(vreinterpretq_f64_m128d(b), 0)
 | |
|                              : 0;
 | |
|     double d1 = (imm & 0x20) ? vgetq_lane_f64(vreinterpretq_f64_m128d(a), 1) *
 | |
|                                    vgetq_lane_f64(vreinterpretq_f64_m128d(b), 1)
 | |
|                              : 0;
 | |
| #else
 | |
|     double d0 = (imm & 0x10) ? ((double *) &a)[0] * ((double *) &b)[0] : 0;
 | |
|     double d1 = (imm & 0x20) ? ((double *) &a)[1] * ((double *) &b)[1] : 0;
 | |
| #endif
 | |
|     __m128d tmp = _mm_set_pd(d1, d0);
 | |
| #endif
 | |
|     // Sum the products
 | |
| #if defined(__aarch64__) || defined(_M_ARM64)
 | |
|     double sum = vpaddd_f64(vreinterpretq_f64_m128d(tmp));
 | |
| #else
 | |
|     double sum = *((double *) &tmp) + *(((double *) &tmp) + 1);
 | |
| #endif
 | |
|     // Conditionally store the sum
 | |
|     const __m128d sumMask =
 | |
|         _mm_castsi128_pd(_mm_set_epi64x(bit1Mask, bit0Mask));
 | |
|     __m128d res = _mm_and_pd(_mm_set_pd1(sum), sumMask);
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| // Conditionally multiply the packed single-precision (32-bit) floating-point
 | |
| // elements in a and b using the high 4 bits in imm8, sum the four products,
 | |
| // and conditionally store the sum in dst using the low 4 bits of imm.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_dp_ps
 | |
| FORCE_INLINE __m128 _mm_dp_ps(__m128 a, __m128 b, const int imm)
 | |
| {
 | |
|     float32x4_t elementwise_prod = _mm_mul_ps(a, b);
 | |
| 
 | |
| #if defined(__aarch64__) || defined(_M_ARM64)
 | |
|     /* shortcuts */
 | |
|     if (imm == 0xFF) {
 | |
|         return _mm_set1_ps(vaddvq_f32(elementwise_prod));
 | |
|     }
 | |
| 
 | |
|     if ((imm & 0x0F) == 0x0F) {
 | |
|         if (!(imm & (1 << 4)))
 | |
|             elementwise_prod = vsetq_lane_f32(0.0f, elementwise_prod, 0);
 | |
|         if (!(imm & (1 << 5)))
 | |
|             elementwise_prod = vsetq_lane_f32(0.0f, elementwise_prod, 1);
 | |
|         if (!(imm & (1 << 6)))
 | |
|             elementwise_prod = vsetq_lane_f32(0.0f, elementwise_prod, 2);
 | |
|         if (!(imm & (1 << 7)))
 | |
|             elementwise_prod = vsetq_lane_f32(0.0f, elementwise_prod, 3);
 | |
| 
 | |
|         return _mm_set1_ps(vaddvq_f32(elementwise_prod));
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     float s = 0.0f;
 | |
| 
 | |
|     if (imm & (1 << 4))
 | |
|         s += vgetq_lane_f32(elementwise_prod, 0);
 | |
|     if (imm & (1 << 5))
 | |
|         s += vgetq_lane_f32(elementwise_prod, 1);
 | |
|     if (imm & (1 << 6))
 | |
|         s += vgetq_lane_f32(elementwise_prod, 2);
 | |
|     if (imm & (1 << 7))
 | |
|         s += vgetq_lane_f32(elementwise_prod, 3);
 | |
| 
 | |
|     const float32_t res[4] = {
 | |
|         (imm & 0x1) ? s : 0.0f,
 | |
|         (imm & 0x2) ? s : 0.0f,
 | |
|         (imm & 0x4) ? s : 0.0f,
 | |
|         (imm & 0x8) ? s : 0.0f,
 | |
|     };
 | |
|     return vreinterpretq_m128_f32(vld1q_f32(res));
 | |
| }
 | |
| 
 | |
| // Extract a 32-bit integer from a, selected with imm8, and store the result in
 | |
| // dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_extract_epi32
 | |
| // FORCE_INLINE int _mm_extract_epi32(__m128i a, __constrange(0,4) int imm)
 | |
| #define _mm_extract_epi32(a, imm) \
 | |
|     vgetq_lane_s32(vreinterpretq_s32_m128i(a), (imm))
 | |
| 
 | |
| // Extract a 64-bit integer from a, selected with imm8, and store the result in
 | |
| // dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_extract_epi64
 | |
| // FORCE_INLINE __int64 _mm_extract_epi64(__m128i a, __constrange(0,2) int imm)
 | |
| #define _mm_extract_epi64(a, imm) \
 | |
|     vgetq_lane_s64(vreinterpretq_s64_m128i(a), (imm))
 | |
| 
 | |
| // Extract an 8-bit integer from a, selected with imm8, and store the result in
 | |
| // the lower element of dst. FORCE_INLINE int _mm_extract_epi8(__m128i a,
 | |
| // __constrange(0,16) int imm)
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_extract_epi8
 | |
| #define _mm_extract_epi8(a, imm) vgetq_lane_u8(vreinterpretq_u8_m128i(a), (imm))
 | |
| 
 | |
| // Extracts the selected single-precision (32-bit) floating-point from a.
 | |
| // FORCE_INLINE int _mm_extract_ps(__m128 a, __constrange(0,4) int imm)
 | |
| #define _mm_extract_ps(a, imm) vgetq_lane_s32(vreinterpretq_s32_m128(a), (imm))
 | |
| 
 | |
| // Round the packed double-precision (64-bit) floating-point elements in a down
 | |
| // to an integer value, and store the results as packed double-precision
 | |
| // floating-point elements in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_floor_pd
 | |
| FORCE_INLINE __m128d _mm_floor_pd(__m128d a)
 | |
| {
 | |
| #if defined(__aarch64__) || defined(_M_ARM64)
 | |
|     return vreinterpretq_m128d_f64(vrndmq_f64(vreinterpretq_f64_m128d(a)));
 | |
| #else
 | |
|     double *f = (double *) &a;
 | |
|     return _mm_set_pd(floor(f[1]), floor(f[0]));
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // Round the packed single-precision (32-bit) floating-point elements in a down
 | |
| // to an integer value, and store the results as packed single-precision
 | |
| // floating-point elements in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_floor_ps
 | |
| FORCE_INLINE __m128 _mm_floor_ps(__m128 a)
 | |
| {
 | |
| #if (defined(__aarch64__) || defined(_M_ARM64)) || \
 | |
|     defined(__ARM_FEATURE_DIRECTED_ROUNDING)
 | |
|     return vreinterpretq_m128_f32(vrndmq_f32(vreinterpretq_f32_m128(a)));
 | |
| #else
 | |
|     float *f = (float *) &a;
 | |
|     return _mm_set_ps(floorf(f[3]), floorf(f[2]), floorf(f[1]), floorf(f[0]));
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // Round the lower double-precision (64-bit) floating-point element in b down to
 | |
| // an integer value, store the result as a double-precision floating-point
 | |
| // element in the lower element of dst, and copy the upper element from a to the
 | |
| // upper element of dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_floor_sd
 | |
| FORCE_INLINE __m128d _mm_floor_sd(__m128d a, __m128d b)
 | |
| {
 | |
|     return _mm_move_sd(a, _mm_floor_pd(b));
 | |
| }
 | |
| 
 | |
| // Round the lower single-precision (32-bit) floating-point element in b down to
 | |
| // an integer value, store the result as a single-precision floating-point
 | |
| // element in the lower element of dst, and copy the upper 3 packed elements
 | |
| // from a to the upper elements of dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_floor_ss
 | |
| FORCE_INLINE __m128 _mm_floor_ss(__m128 a, __m128 b)
 | |
| {
 | |
|     return _mm_move_ss(a, _mm_floor_ps(b));
 | |
| }
 | |
| 
 | |
| // Copy a to dst, and insert the 32-bit integer i into dst at the location
 | |
| // specified by imm8.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_insert_epi32
 | |
| // FORCE_INLINE __m128i _mm_insert_epi32(__m128i a, int b,
 | |
| //                                       __constrange(0,4) int imm)
 | |
| #define _mm_insert_epi32(a, b, imm) \
 | |
|     vreinterpretq_m128i_s32(        \
 | |
|         vsetq_lane_s32((b), vreinterpretq_s32_m128i(a), (imm)))
 | |
| 
 | |
| // Copy a to dst, and insert the 64-bit integer i into dst at the location
 | |
| // specified by imm8.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_insert_epi64
 | |
| // FORCE_INLINE __m128i _mm_insert_epi64(__m128i a, __int64 b,
 | |
| //                                       __constrange(0,2) int imm)
 | |
| #define _mm_insert_epi64(a, b, imm) \
 | |
|     vreinterpretq_m128i_s64(        \
 | |
|         vsetq_lane_s64((b), vreinterpretq_s64_m128i(a), (imm)))
 | |
| 
 | |
| // Copy a to dst, and insert the lower 8-bit integer from i into dst at the
 | |
| // location specified by imm8.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_insert_epi8
 | |
| // FORCE_INLINE __m128i _mm_insert_epi8(__m128i a, int b,
 | |
| //                                      __constrange(0,16) int imm)
 | |
| #define _mm_insert_epi8(a, b, imm) \
 | |
|     vreinterpretq_m128i_s8(vsetq_lane_s8((b), vreinterpretq_s8_m128i(a), (imm)))
 | |
| 
 | |
| // Copy a to tmp, then insert a single-precision (32-bit) floating-point
 | |
| // element from b into tmp using the control in imm8. Store tmp to dst using
 | |
| // the mask in imm8 (elements are zeroed out when the corresponding bit is set).
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=insert_ps
 | |
| #define _mm_insert_ps(a, b, imm8)                                            \
 | |
|     _sse2neon_define2(                                                       \
 | |
|         __m128, a, b,                                                        \
 | |
|         float32x4_t tmp1 =                                                   \
 | |
|             vsetq_lane_f32(vgetq_lane_f32(_b, (imm8 >> 6) & 0x3),            \
 | |
|                            vreinterpretq_f32_m128(_a), 0);                   \
 | |
|         float32x4_t tmp2 =                                                   \
 | |
|             vsetq_lane_f32(vgetq_lane_f32(tmp1, 0),                          \
 | |
|                            vreinterpretq_f32_m128(_a), ((imm8 >> 4) & 0x3)); \
 | |
|         const uint32_t data[4] =                                             \
 | |
|             _sse2neon_init(((imm8) & (1 << 0)) ? UINT32_MAX : 0,             \
 | |
|                            ((imm8) & (1 << 1)) ? UINT32_MAX : 0,             \
 | |
|                            ((imm8) & (1 << 2)) ? UINT32_MAX : 0,             \
 | |
|                            ((imm8) & (1 << 3)) ? UINT32_MAX : 0);            \
 | |
|         uint32x4_t mask = vld1q_u32(data);                                   \
 | |
|         float32x4_t all_zeros = vdupq_n_f32(0);                              \
 | |
|                                                                              \
 | |
|         _sse2neon_return(vreinterpretq_m128_f32(                             \
 | |
|             vbslq_f32(mask, all_zeros, vreinterpretq_f32_m128(tmp2))));)
 | |
| 
 | |
| // Compare packed signed 32-bit integers in a and b, and store packed maximum
 | |
| // values in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_max_epi32
 | |
| FORCE_INLINE __m128i _mm_max_epi32(__m128i a, __m128i b)
 | |
| {
 | |
|     return vreinterpretq_m128i_s32(
 | |
|         vmaxq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b)));
 | |
| }
 | |
| 
 | |
| // Compare packed signed 8-bit integers in a and b, and store packed maximum
 | |
| // values in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_max_epi8
 | |
| FORCE_INLINE __m128i _mm_max_epi8(__m128i a, __m128i b)
 | |
| {
 | |
|     return vreinterpretq_m128i_s8(
 | |
|         vmaxq_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b)));
 | |
| }
 | |
| 
 | |
| // Compare packed unsigned 16-bit integers in a and b, and store packed maximum
 | |
| // values in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_max_epu16
 | |
| FORCE_INLINE __m128i _mm_max_epu16(__m128i a, __m128i b)
 | |
| {
 | |
|     return vreinterpretq_m128i_u16(
 | |
|         vmaxq_u16(vreinterpretq_u16_m128i(a), vreinterpretq_u16_m128i(b)));
 | |
| }
 | |
| 
 | |
| // Compare packed unsigned 32-bit integers in a and b, and store packed maximum
 | |
| // values in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_max_epu32
 | |
| FORCE_INLINE __m128i _mm_max_epu32(__m128i a, __m128i b)
 | |
| {
 | |
|     return vreinterpretq_m128i_u32(
 | |
|         vmaxq_u32(vreinterpretq_u32_m128i(a), vreinterpretq_u32_m128i(b)));
 | |
| }
 | |
| 
 | |
| // Compare packed signed 32-bit integers in a and b, and store packed minimum
 | |
| // values in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_min_epi32
 | |
| FORCE_INLINE __m128i _mm_min_epi32(__m128i a, __m128i b)
 | |
| {
 | |
|     return vreinterpretq_m128i_s32(
 | |
|         vminq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b)));
 | |
| }
 | |
| 
 | |
| // Compare packed signed 8-bit integers in a and b, and store packed minimum
 | |
| // values in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_min_epi8
 | |
| FORCE_INLINE __m128i _mm_min_epi8(__m128i a, __m128i b)
 | |
| {
 | |
|     return vreinterpretq_m128i_s8(
 | |
|         vminq_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b)));
 | |
| }
 | |
| 
 | |
| // Compare packed unsigned 16-bit integers in a and b, and store packed minimum
 | |
| // values in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_min_epu16
 | |
| FORCE_INLINE __m128i _mm_min_epu16(__m128i a, __m128i b)
 | |
| {
 | |
|     return vreinterpretq_m128i_u16(
 | |
|         vminq_u16(vreinterpretq_u16_m128i(a), vreinterpretq_u16_m128i(b)));
 | |
| }
 | |
| 
 | |
| // Compare packed unsigned 32-bit integers in a and b, and store packed minimum
 | |
| // values in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_max_epu32
 | |
| FORCE_INLINE __m128i _mm_min_epu32(__m128i a, __m128i b)
 | |
| {
 | |
|     return vreinterpretq_m128i_u32(
 | |
|         vminq_u32(vreinterpretq_u32_m128i(a), vreinterpretq_u32_m128i(b)));
 | |
| }
 | |
| 
 | |
| // Horizontally compute the minimum amongst the packed unsigned 16-bit integers
 | |
| // in a, store the minimum and index in dst, and zero the remaining bits in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_minpos_epu16
 | |
| FORCE_INLINE __m128i _mm_minpos_epu16(__m128i a)
 | |
| {
 | |
|     __m128i dst;
 | |
|     uint16_t min, idx = 0;
 | |
| #if defined(__aarch64__) || defined(_M_ARM64)
 | |
|     // Find the minimum value
 | |
|     min = vminvq_u16(vreinterpretq_u16_m128i(a));
 | |
| 
 | |
|     // Get the index of the minimum value
 | |
|     static const uint16_t idxv[] = {0, 1, 2, 3, 4, 5, 6, 7};
 | |
|     uint16x8_t minv = vdupq_n_u16(min);
 | |
|     uint16x8_t cmeq = vceqq_u16(minv, vreinterpretq_u16_m128i(a));
 | |
|     idx = vminvq_u16(vornq_u16(vld1q_u16(idxv), cmeq));
 | |
| #else
 | |
|     // Find the minimum value
 | |
|     __m64 tmp;
 | |
|     tmp = vreinterpret_m64_u16(
 | |
|         vmin_u16(vget_low_u16(vreinterpretq_u16_m128i(a)),
 | |
|                  vget_high_u16(vreinterpretq_u16_m128i(a))));
 | |
|     tmp = vreinterpret_m64_u16(
 | |
|         vpmin_u16(vreinterpret_u16_m64(tmp), vreinterpret_u16_m64(tmp)));
 | |
|     tmp = vreinterpret_m64_u16(
 | |
|         vpmin_u16(vreinterpret_u16_m64(tmp), vreinterpret_u16_m64(tmp)));
 | |
|     min = vget_lane_u16(vreinterpret_u16_m64(tmp), 0);
 | |
|     // Get the index of the minimum value
 | |
|     int i;
 | |
|     for (i = 0; i < 8; i++) {
 | |
|         if (min == vgetq_lane_u16(vreinterpretq_u16_m128i(a), 0)) {
 | |
|             idx = (uint16_t) i;
 | |
|             break;
 | |
|         }
 | |
|         a = _mm_srli_si128(a, 2);
 | |
|     }
 | |
| #endif
 | |
|     // Generate result
 | |
|     dst = _mm_setzero_si128();
 | |
|     dst = vreinterpretq_m128i_u16(
 | |
|         vsetq_lane_u16(min, vreinterpretq_u16_m128i(dst), 0));
 | |
|     dst = vreinterpretq_m128i_u16(
 | |
|         vsetq_lane_u16(idx, vreinterpretq_u16_m128i(dst), 1));
 | |
|     return dst;
 | |
| }
 | |
| 
 | |
| // Compute the sum of absolute differences (SADs) of quadruplets of unsigned
 | |
| // 8-bit integers in a compared to those in b, and store the 16-bit results in
 | |
| // dst. Eight SADs are performed using one quadruplet from b and eight
 | |
| // quadruplets from a. One quadruplet is selected from b starting at on the
 | |
| // offset specified in imm8. Eight quadruplets are formed from sequential 8-bit
 | |
| // integers selected from a starting at the offset specified in imm8.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mpsadbw_epu8
 | |
| FORCE_INLINE __m128i _mm_mpsadbw_epu8(__m128i a, __m128i b, const int imm)
 | |
| {
 | |
|     uint8x16_t _a, _b;
 | |
| 
 | |
|     switch (imm & 0x4) {
 | |
|     case 0:
 | |
|         // do nothing
 | |
|         _a = vreinterpretq_u8_m128i(a);
 | |
|         break;
 | |
|     case 4:
 | |
|         _a = vreinterpretq_u8_u32(vextq_u32(vreinterpretq_u32_m128i(a),
 | |
|                                             vreinterpretq_u32_m128i(a), 1));
 | |
|         break;
 | |
|     default:
 | |
| #if defined(__GNUC__) || defined(__clang__)
 | |
|         __builtin_unreachable();
 | |
| #elif defined(_MSC_VER)
 | |
|         __assume(0);
 | |
| #endif
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|     switch (imm & 0x3) {
 | |
|     case 0:
 | |
|         _b = vreinterpretq_u8_u32(
 | |
|             vdupq_n_u32(vgetq_lane_u32(vreinterpretq_u32_m128i(b), 0)));
 | |
|         break;
 | |
|     case 1:
 | |
|         _b = vreinterpretq_u8_u32(
 | |
|             vdupq_n_u32(vgetq_lane_u32(vreinterpretq_u32_m128i(b), 1)));
 | |
|         break;
 | |
|     case 2:
 | |
|         _b = vreinterpretq_u8_u32(
 | |
|             vdupq_n_u32(vgetq_lane_u32(vreinterpretq_u32_m128i(b), 2)));
 | |
|         break;
 | |
|     case 3:
 | |
|         _b = vreinterpretq_u8_u32(
 | |
|             vdupq_n_u32(vgetq_lane_u32(vreinterpretq_u32_m128i(b), 3)));
 | |
|         break;
 | |
|     default:
 | |
| #if defined(__GNUC__) || defined(__clang__)
 | |
|         __builtin_unreachable();
 | |
| #elif defined(_MSC_VER)
 | |
|         __assume(0);
 | |
| #endif
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|     int16x8_t c04, c15, c26, c37;
 | |
|     uint8x8_t low_b = vget_low_u8(_b);
 | |
|     c04 = vreinterpretq_s16_u16(vabdl_u8(vget_low_u8(_a), low_b));
 | |
|     uint8x16_t _a_1 = vextq_u8(_a, _a, 1);
 | |
|     c15 = vreinterpretq_s16_u16(vabdl_u8(vget_low_u8(_a_1), low_b));
 | |
|     uint8x16_t _a_2 = vextq_u8(_a, _a, 2);
 | |
|     c26 = vreinterpretq_s16_u16(vabdl_u8(vget_low_u8(_a_2), low_b));
 | |
|     uint8x16_t _a_3 = vextq_u8(_a, _a, 3);
 | |
|     c37 = vreinterpretq_s16_u16(vabdl_u8(vget_low_u8(_a_3), low_b));
 | |
| #if defined(__aarch64__) || defined(_M_ARM64)
 | |
|     // |0|4|2|6|
 | |
|     c04 = vpaddq_s16(c04, c26);
 | |
|     // |1|5|3|7|
 | |
|     c15 = vpaddq_s16(c15, c37);
 | |
| 
 | |
|     int32x4_t trn1_c =
 | |
|         vtrn1q_s32(vreinterpretq_s32_s16(c04), vreinterpretq_s32_s16(c15));
 | |
|     int32x4_t trn2_c =
 | |
|         vtrn2q_s32(vreinterpretq_s32_s16(c04), vreinterpretq_s32_s16(c15));
 | |
|     return vreinterpretq_m128i_s16(vpaddq_s16(vreinterpretq_s16_s32(trn1_c),
 | |
|                                               vreinterpretq_s16_s32(trn2_c)));
 | |
| #else
 | |
|     int16x4_t c01, c23, c45, c67;
 | |
|     c01 = vpadd_s16(vget_low_s16(c04), vget_low_s16(c15));
 | |
|     c23 = vpadd_s16(vget_low_s16(c26), vget_low_s16(c37));
 | |
|     c45 = vpadd_s16(vget_high_s16(c04), vget_high_s16(c15));
 | |
|     c67 = vpadd_s16(vget_high_s16(c26), vget_high_s16(c37));
 | |
| 
 | |
|     return vreinterpretq_m128i_s16(
 | |
|         vcombine_s16(vpadd_s16(c01, c23), vpadd_s16(c45, c67)));
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // Multiply the low signed 32-bit integers from each packed 64-bit element in
 | |
| // a and b, and store the signed 64-bit results in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mul_epi32
 | |
| FORCE_INLINE __m128i _mm_mul_epi32(__m128i a, __m128i b)
 | |
| {
 | |
|     // vmull_s32 upcasts instead of masking, so we downcast.
 | |
|     int32x2_t a_lo = vmovn_s64(vreinterpretq_s64_m128i(a));
 | |
|     int32x2_t b_lo = vmovn_s64(vreinterpretq_s64_m128i(b));
 | |
|     return vreinterpretq_m128i_s64(vmull_s32(a_lo, b_lo));
 | |
| }
 | |
| 
 | |
| // Multiply the packed 32-bit integers in a and b, producing intermediate 64-bit
 | |
| // integers, and store the low 32 bits of the intermediate integers in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mullo_epi32
 | |
| FORCE_INLINE __m128i _mm_mullo_epi32(__m128i a, __m128i b)
 | |
| {
 | |
|     return vreinterpretq_m128i_s32(
 | |
|         vmulq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b)));
 | |
| }
 | |
| 
 | |
| // Convert packed signed 32-bit integers from a and b to packed 16-bit integers
 | |
| // using unsigned saturation, and store the results in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_packus_epi32
 | |
| FORCE_INLINE __m128i _mm_packus_epi32(__m128i a, __m128i b)
 | |
| {
 | |
|     return vreinterpretq_m128i_u16(
 | |
|         vcombine_u16(vqmovun_s32(vreinterpretq_s32_m128i(a)),
 | |
|                      vqmovun_s32(vreinterpretq_s32_m128i(b))));
 | |
| }
 | |
| 
 | |
| // Round the packed double-precision (64-bit) floating-point elements in a using
 | |
| // the rounding parameter, and store the results as packed double-precision
 | |
| // floating-point elements in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_round_pd
 | |
| FORCE_INLINE __m128d _mm_round_pd(__m128d a, int rounding)
 | |
| {
 | |
| #if defined(__aarch64__) || defined(_M_ARM64)
 | |
|     switch (rounding) {
 | |
|     case (_MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC):
 | |
|         return vreinterpretq_m128d_f64(vrndnq_f64(vreinterpretq_f64_m128d(a)));
 | |
|     case (_MM_FROUND_TO_NEG_INF | _MM_FROUND_NO_EXC):
 | |
|         return _mm_floor_pd(a);
 | |
|     case (_MM_FROUND_TO_POS_INF | _MM_FROUND_NO_EXC):
 | |
|         return _mm_ceil_pd(a);
 | |
|     case (_MM_FROUND_TO_ZERO | _MM_FROUND_NO_EXC):
 | |
|         return vreinterpretq_m128d_f64(vrndq_f64(vreinterpretq_f64_m128d(a)));
 | |
|     default:  //_MM_FROUND_CUR_DIRECTION
 | |
|         return vreinterpretq_m128d_f64(vrndiq_f64(vreinterpretq_f64_m128d(a)));
 | |
|     }
 | |
| #else
 | |
|     double *v_double = (double *) &a;
 | |
| 
 | |
|     if (rounding == (_MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC) ||
 | |
|         (rounding == _MM_FROUND_CUR_DIRECTION &&
 | |
|          _MM_GET_ROUNDING_MODE() == _MM_ROUND_NEAREST)) {
 | |
|         double res[2], tmp;
 | |
|         for (int i = 0; i < 2; i++) {
 | |
|             tmp = (v_double[i] < 0) ? -v_double[i] : v_double[i];
 | |
|             double roundDown = floor(tmp);  // Round down value
 | |
|             double roundUp = ceil(tmp);     // Round up value
 | |
|             double diffDown = tmp - roundDown;
 | |
|             double diffUp = roundUp - tmp;
 | |
|             if (diffDown < diffUp) {
 | |
|                 /* If it's closer to the round down value, then use it */
 | |
|                 res[i] = roundDown;
 | |
|             } else if (diffDown > diffUp) {
 | |
|                 /* If it's closer to the round up value, then use it */
 | |
|                 res[i] = roundUp;
 | |
|             } else {
 | |
|                 /* If it's equidistant between round up and round down value,
 | |
|                  * pick the one which is an even number */
 | |
|                 double half = roundDown / 2;
 | |
|                 if (half != floor(half)) {
 | |
|                     /* If the round down value is odd, return the round up value
 | |
|                      */
 | |
|                     res[i] = roundUp;
 | |
|                 } else {
 | |
|                     /* If the round up value is odd, return the round down value
 | |
|                      */
 | |
|                     res[i] = roundDown;
 | |
|                 }
 | |
|             }
 | |
|             res[i] = (v_double[i] < 0) ? -res[i] : res[i];
 | |
|         }
 | |
|         return _mm_set_pd(res[1], res[0]);
 | |
|     } else if (rounding == (_MM_FROUND_TO_NEG_INF | _MM_FROUND_NO_EXC) ||
 | |
|                (rounding == _MM_FROUND_CUR_DIRECTION &&
 | |
|                 _MM_GET_ROUNDING_MODE() == _MM_ROUND_DOWN)) {
 | |
|         return _mm_floor_pd(a);
 | |
|     } else if (rounding == (_MM_FROUND_TO_POS_INF | _MM_FROUND_NO_EXC) ||
 | |
|                (rounding == _MM_FROUND_CUR_DIRECTION &&
 | |
|                 _MM_GET_ROUNDING_MODE() == _MM_ROUND_UP)) {
 | |
|         return _mm_ceil_pd(a);
 | |
|     }
 | |
|     return _mm_set_pd(v_double[1] > 0 ? floor(v_double[1]) : ceil(v_double[1]),
 | |
|                       v_double[0] > 0 ? floor(v_double[0]) : ceil(v_double[0]));
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // Round the packed single-precision (32-bit) floating-point elements in a using
 | |
| // the rounding parameter, and store the results as packed single-precision
 | |
| // floating-point elements in dst.
 | |
| // software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_round_ps
 | |
| FORCE_INLINE __m128 _mm_round_ps(__m128 a, int rounding)
 | |
| {
 | |
| #if (defined(__aarch64__) || defined(_M_ARM64)) || \
 | |
|     defined(__ARM_FEATURE_DIRECTED_ROUNDING)
 | |
|     switch (rounding) {
 | |
|     case (_MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC):
 | |
|         return vreinterpretq_m128_f32(vrndnq_f32(vreinterpretq_f32_m128(a)));
 | |
|     case (_MM_FROUND_TO_NEG_INF | _MM_FROUND_NO_EXC):
 | |
|         return _mm_floor_ps(a);
 | |
|     case (_MM_FROUND_TO_POS_INF | _MM_FROUND_NO_EXC):
 | |
|         return _mm_ceil_ps(a);
 | |
|     case (_MM_FROUND_TO_ZERO | _MM_FROUND_NO_EXC):
 | |
|         return vreinterpretq_m128_f32(vrndq_f32(vreinterpretq_f32_m128(a)));
 | |
|     default:  //_MM_FROUND_CUR_DIRECTION
 | |
|         return vreinterpretq_m128_f32(vrndiq_f32(vreinterpretq_f32_m128(a)));
 | |
|     }
 | |
| #else
 | |
|     float *v_float = (float *) &a;
 | |
| 
 | |
|     if (rounding == (_MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC) ||
 | |
|         (rounding == _MM_FROUND_CUR_DIRECTION &&
 | |
|          _MM_GET_ROUNDING_MODE() == _MM_ROUND_NEAREST)) {
 | |
|         uint32x4_t signmask = vdupq_n_u32(0x80000000);
 | |
|         float32x4_t half = vbslq_f32(signmask, vreinterpretq_f32_m128(a),
 | |
|                                      vdupq_n_f32(0.5f)); /* +/- 0.5 */
 | |
|         int32x4_t r_normal = vcvtq_s32_f32(vaddq_f32(
 | |
|             vreinterpretq_f32_m128(a), half)); /* round to integer: [a + 0.5]*/
 | |
|         int32x4_t r_trunc = vcvtq_s32_f32(
 | |
|             vreinterpretq_f32_m128(a)); /* truncate to integer: [a] */
 | |
|         int32x4_t plusone = vreinterpretq_s32_u32(vshrq_n_u32(
 | |
|             vreinterpretq_u32_s32(vnegq_s32(r_trunc)), 31)); /* 1 or 0 */
 | |
|         int32x4_t r_even = vbicq_s32(vaddq_s32(r_trunc, plusone),
 | |
|                                      vdupq_n_s32(1)); /* ([a] + {0,1}) & ~1 */
 | |
|         float32x4_t delta = vsubq_f32(
 | |
|             vreinterpretq_f32_m128(a),
 | |
|             vcvtq_f32_s32(r_trunc)); /* compute delta: delta = (a - [a]) */
 | |
|         uint32x4_t is_delta_half =
 | |
|             vceqq_f32(delta, half); /* delta == +/- 0.5 */
 | |
|         return vreinterpretq_m128_f32(
 | |
|             vcvtq_f32_s32(vbslq_s32(is_delta_half, r_even, r_normal)));
 | |
|     } else if (rounding == (_MM_FROUND_TO_NEG_INF | _MM_FROUND_NO_EXC) ||
 | |
|                (rounding == _MM_FROUND_CUR_DIRECTION &&
 | |
|                 _MM_GET_ROUNDING_MODE() == _MM_ROUND_DOWN)) {
 | |
|         return _mm_floor_ps(a);
 | |
|     } else if (rounding == (_MM_FROUND_TO_POS_INF | _MM_FROUND_NO_EXC) ||
 | |
|                (rounding == _MM_FROUND_CUR_DIRECTION &&
 | |
|                 _MM_GET_ROUNDING_MODE() == _MM_ROUND_UP)) {
 | |
|         return _mm_ceil_ps(a);
 | |
|     }
 | |
|     return _mm_set_ps(v_float[3] > 0 ? floorf(v_float[3]) : ceilf(v_float[3]),
 | |
|                       v_float[2] > 0 ? floorf(v_float[2]) : ceilf(v_float[2]),
 | |
|                       v_float[1] > 0 ? floorf(v_float[1]) : ceilf(v_float[1]),
 | |
|                       v_float[0] > 0 ? floorf(v_float[0]) : ceilf(v_float[0]));
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // Round the lower double-precision (64-bit) floating-point element in b using
 | |
| // the rounding parameter, store the result as a double-precision floating-point
 | |
| // element in the lower element of dst, and copy the upper element from a to the
 | |
| // upper element of dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_round_sd
 | |
| FORCE_INLINE __m128d _mm_round_sd(__m128d a, __m128d b, int rounding)
 | |
| {
 | |
|     return _mm_move_sd(a, _mm_round_pd(b, rounding));
 | |
| }
 | |
| 
 | |
| // Round the lower single-precision (32-bit) floating-point element in b using
 | |
| // the rounding parameter, store the result as a single-precision floating-point
 | |
| // element in the lower element of dst, and copy the upper 3 packed elements
 | |
| // from a to the upper elements of dst. Rounding is done according to the
 | |
| // rounding[3:0] parameter, which can be one of:
 | |
| //     (_MM_FROUND_TO_NEAREST_INT |_MM_FROUND_NO_EXC) // round to nearest, and
 | |
| //     suppress exceptions
 | |
| //     (_MM_FROUND_TO_NEG_INF |_MM_FROUND_NO_EXC)     // round down, and
 | |
| //     suppress exceptions
 | |
| //     (_MM_FROUND_TO_POS_INF |_MM_FROUND_NO_EXC)     // round up, and suppress
 | |
| //     exceptions
 | |
| //     (_MM_FROUND_TO_ZERO |_MM_FROUND_NO_EXC)        // truncate, and suppress
 | |
| //     exceptions _MM_FROUND_CUR_DIRECTION // use MXCSR.RC; see
 | |
| //     _MM_SET_ROUNDING_MODE
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_round_ss
 | |
| FORCE_INLINE __m128 _mm_round_ss(__m128 a, __m128 b, int rounding)
 | |
| {
 | |
|     return _mm_move_ss(a, _mm_round_ps(b, rounding));
 | |
| }
 | |
| 
 | |
| // Load 128-bits of integer data from memory into dst using a non-temporal
 | |
| // memory hint. mem_addr must be aligned on a 16-byte boundary or a
 | |
| // general-protection exception may be generated.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_stream_load_si128
 | |
| FORCE_INLINE __m128i _mm_stream_load_si128(__m128i *p)
 | |
| {
 | |
| #if __has_builtin(__builtin_nontemporal_store)
 | |
|     return __builtin_nontemporal_load(p);
 | |
| #else
 | |
|     return vreinterpretq_m128i_s64(vld1q_s64((int64_t *) p));
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // Compute the bitwise NOT of a and then AND with a 128-bit vector containing
 | |
| // all 1's, and return 1 if the result is zero, otherwise return 0.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_test_all_ones
 | |
| FORCE_INLINE int _mm_test_all_ones(__m128i a)
 | |
| {
 | |
|     return (uint64_t) (vgetq_lane_s64(a, 0) & vgetq_lane_s64(a, 1)) ==
 | |
|            ~(uint64_t) 0;
 | |
| }
 | |
| 
 | |
| // Compute the bitwise AND of 128 bits (representing integer data) in a and
 | |
| // mask, and return 1 if the result is zero, otherwise return 0.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_test_all_zeros
 | |
| FORCE_INLINE int _mm_test_all_zeros(__m128i a, __m128i mask)
 | |
| {
 | |
|     int64x2_t a_and_mask =
 | |
|         vandq_s64(vreinterpretq_s64_m128i(a), vreinterpretq_s64_m128i(mask));
 | |
|     return !(vgetq_lane_s64(a_and_mask, 0) | vgetq_lane_s64(a_and_mask, 1));
 | |
| }
 | |
| 
 | |
| // Compute the bitwise AND of 128 bits (representing integer data) in a and
 | |
| // mask, and set ZF to 1 if the result is zero, otherwise set ZF to 0. Compute
 | |
| // the bitwise NOT of a and then AND with mask, and set CF to 1 if the result is
 | |
| // zero, otherwise set CF to 0. Return 1 if both the ZF and CF values are zero,
 | |
| // otherwise return 0.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=mm_test_mix_ones_zero
 | |
| // Note: Argument names may be wrong in the Intel intrinsics guide.
 | |
| FORCE_INLINE int _mm_test_mix_ones_zeros(__m128i a, __m128i mask)
 | |
| {
 | |
|     uint64x2_t v = vreinterpretq_u64_m128i(a);
 | |
|     uint64x2_t m = vreinterpretq_u64_m128i(mask);
 | |
| 
 | |
|     // find ones (set-bits) and zeros (clear-bits) under clip mask
 | |
|     uint64x2_t ones = vandq_u64(m, v);
 | |
|     uint64x2_t zeros = vbicq_u64(m, v);
 | |
| 
 | |
|     // If both 128-bit variables are populated (non-zero) then return 1.
 | |
|     // For comparision purposes, first compact each var down to 32-bits.
 | |
|     uint32x2_t reduced = vpmax_u32(vqmovn_u64(ones), vqmovn_u64(zeros));
 | |
| 
 | |
|     // if folding minimum is non-zero then both vars must be non-zero
 | |
|     return (vget_lane_u32(vpmin_u32(reduced, reduced), 0) != 0);
 | |
| }
 | |
| 
 | |
| // Compute the bitwise AND of 128 bits (representing integer data) in a and b,
 | |
| // and set ZF to 1 if the result is zero, otherwise set ZF to 0. Compute the
 | |
| // bitwise NOT of a and then AND with b, and set CF to 1 if the result is zero,
 | |
| // otherwise set CF to 0. Return the CF value.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_testc_si128
 | |
| FORCE_INLINE int _mm_testc_si128(__m128i a, __m128i b)
 | |
| {
 | |
|     int64x2_t s64 =
 | |
|         vbicq_s64(vreinterpretq_s64_m128i(b), vreinterpretq_s64_m128i(a));
 | |
|     return !(vgetq_lane_s64(s64, 0) | vgetq_lane_s64(s64, 1));
 | |
| }
 | |
| 
 | |
| // Compute the bitwise AND of 128 bits (representing integer data) in a and b,
 | |
| // and set ZF to 1 if the result is zero, otherwise set ZF to 0. Compute the
 | |
| // bitwise NOT of a and then AND with b, and set CF to 1 if the result is zero,
 | |
| // otherwise set CF to 0. Return 1 if both the ZF and CF values are zero,
 | |
| // otherwise return 0.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_testnzc_si128
 | |
| #define _mm_testnzc_si128(a, b) _mm_test_mix_ones_zeros(a, b)
 | |
| 
 | |
| // Compute the bitwise AND of 128 bits (representing integer data) in a and b,
 | |
| // and set ZF to 1 if the result is zero, otherwise set ZF to 0. Compute the
 | |
| // bitwise NOT of a and then AND with b, and set CF to 1 if the result is zero,
 | |
| // otherwise set CF to 0. Return the ZF value.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_testz_si128
 | |
| FORCE_INLINE int _mm_testz_si128(__m128i a, __m128i b)
 | |
| {
 | |
|     int64x2_t s64 =
 | |
|         vandq_s64(vreinterpretq_s64_m128i(a), vreinterpretq_s64_m128i(b));
 | |
|     return !(vgetq_lane_s64(s64, 0) | vgetq_lane_s64(s64, 1));
 | |
| }
 | |
| 
 | |
| /* SSE4.2 */
 | |
| 
 | |
| static const uint16_t ALIGN_STRUCT(16) _sse2neon_cmpestr_mask16b[8] = {
 | |
|     0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
 | |
| };
 | |
| static const uint8_t ALIGN_STRUCT(16) _sse2neon_cmpestr_mask8b[16] = {
 | |
|     0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
 | |
|     0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
 | |
| };
 | |
| 
 | |
| /* specify the source data format */
 | |
| #define _SIDD_UBYTE_OPS 0x00 /* unsigned 8-bit characters */
 | |
| #define _SIDD_UWORD_OPS 0x01 /* unsigned 16-bit characters */
 | |
| #define _SIDD_SBYTE_OPS 0x02 /* signed 8-bit characters */
 | |
| #define _SIDD_SWORD_OPS 0x03 /* signed 16-bit characters */
 | |
| 
 | |
| /* specify the comparison operation */
 | |
| #define _SIDD_CMP_EQUAL_ANY 0x00     /* compare equal any: strchr */
 | |
| #define _SIDD_CMP_RANGES 0x04        /* compare ranges */
 | |
| #define _SIDD_CMP_EQUAL_EACH 0x08    /* compare equal each: strcmp */
 | |
| #define _SIDD_CMP_EQUAL_ORDERED 0x0C /* compare equal ordered */
 | |
| 
 | |
| /* specify the polarity */
 | |
| #define _SIDD_POSITIVE_POLARITY 0x00
 | |
| #define _SIDD_MASKED_POSITIVE_POLARITY 0x20
 | |
| #define _SIDD_NEGATIVE_POLARITY 0x10 /* negate results */
 | |
| #define _SIDD_MASKED_NEGATIVE_POLARITY \
 | |
|     0x30 /* negate results only before end of string */
 | |
| 
 | |
| /* specify the output selection in _mm_cmpXstri */
 | |
| #define _SIDD_LEAST_SIGNIFICANT 0x00
 | |
| #define _SIDD_MOST_SIGNIFICANT 0x40
 | |
| 
 | |
| /* specify the output selection in _mm_cmpXstrm */
 | |
| #define _SIDD_BIT_MASK 0x00
 | |
| #define _SIDD_UNIT_MASK 0x40
 | |
| 
 | |
| /* Pattern Matching for C macros.
 | |
|  * https://github.com/pfultz2/Cloak/wiki/C-Preprocessor-tricks,-tips,-and-idioms
 | |
|  */
 | |
| 
 | |
| /* catenate */
 | |
| #define SSE2NEON_PRIMITIVE_CAT(a, ...) a##__VA_ARGS__
 | |
| #define SSE2NEON_CAT(a, b) SSE2NEON_PRIMITIVE_CAT(a, b)
 | |
| 
 | |
| #define SSE2NEON_IIF(c) SSE2NEON_PRIMITIVE_CAT(SSE2NEON_IIF_, c)
 | |
| /* run the 2nd parameter */
 | |
| #define SSE2NEON_IIF_0(t, ...) __VA_ARGS__
 | |
| /* run the 1st parameter */
 | |
| #define SSE2NEON_IIF_1(t, ...) t
 | |
| 
 | |
| #define SSE2NEON_COMPL(b) SSE2NEON_PRIMITIVE_CAT(SSE2NEON_COMPL_, b)
 | |
| #define SSE2NEON_COMPL_0 1
 | |
| #define SSE2NEON_COMPL_1 0
 | |
| 
 | |
| #define SSE2NEON_DEC(x) SSE2NEON_PRIMITIVE_CAT(SSE2NEON_DEC_, x)
 | |
| #define SSE2NEON_DEC_1 0
 | |
| #define SSE2NEON_DEC_2 1
 | |
| #define SSE2NEON_DEC_3 2
 | |
| #define SSE2NEON_DEC_4 3
 | |
| #define SSE2NEON_DEC_5 4
 | |
| #define SSE2NEON_DEC_6 5
 | |
| #define SSE2NEON_DEC_7 6
 | |
| #define SSE2NEON_DEC_8 7
 | |
| #define SSE2NEON_DEC_9 8
 | |
| #define SSE2NEON_DEC_10 9
 | |
| #define SSE2NEON_DEC_11 10
 | |
| #define SSE2NEON_DEC_12 11
 | |
| #define SSE2NEON_DEC_13 12
 | |
| #define SSE2NEON_DEC_14 13
 | |
| #define SSE2NEON_DEC_15 14
 | |
| #define SSE2NEON_DEC_16 15
 | |
| 
 | |
| /* detection */
 | |
| #define SSE2NEON_CHECK_N(x, n, ...) n
 | |
| #define SSE2NEON_CHECK(...) SSE2NEON_CHECK_N(__VA_ARGS__, 0, )
 | |
| #define SSE2NEON_PROBE(x) x, 1,
 | |
| 
 | |
| #define SSE2NEON_NOT(x) SSE2NEON_CHECK(SSE2NEON_PRIMITIVE_CAT(SSE2NEON_NOT_, x))
 | |
| #define SSE2NEON_NOT_0 SSE2NEON_PROBE(~)
 | |
| 
 | |
| #define SSE2NEON_BOOL(x) SSE2NEON_COMPL(SSE2NEON_NOT(x))
 | |
| #define SSE2NEON_IF(c) SSE2NEON_IIF(SSE2NEON_BOOL(c))
 | |
| 
 | |
| #define SSE2NEON_EAT(...)
 | |
| #define SSE2NEON_EXPAND(...) __VA_ARGS__
 | |
| #define SSE2NEON_WHEN(c) SSE2NEON_IF(c)(SSE2NEON_EXPAND, SSE2NEON_EAT)
 | |
| 
 | |
| /* recursion */
 | |
| /* deferred expression */
 | |
| #define SSE2NEON_EMPTY()
 | |
| #define SSE2NEON_DEFER(id) id SSE2NEON_EMPTY()
 | |
| #define SSE2NEON_OBSTRUCT(...) __VA_ARGS__ SSE2NEON_DEFER(SSE2NEON_EMPTY)()
 | |
| #define SSE2NEON_EXPAND(...) __VA_ARGS__
 | |
| 
 | |
| #define SSE2NEON_EVAL(...) \
 | |
|     SSE2NEON_EVAL1(SSE2NEON_EVAL1(SSE2NEON_EVAL1(__VA_ARGS__)))
 | |
| #define SSE2NEON_EVAL1(...) \
 | |
|     SSE2NEON_EVAL2(SSE2NEON_EVAL2(SSE2NEON_EVAL2(__VA_ARGS__)))
 | |
| #define SSE2NEON_EVAL2(...) \
 | |
|     SSE2NEON_EVAL3(SSE2NEON_EVAL3(SSE2NEON_EVAL3(__VA_ARGS__)))
 | |
| #define SSE2NEON_EVAL3(...) __VA_ARGS__
 | |
| 
 | |
| #define SSE2NEON_REPEAT(count, macro, ...)                         \
 | |
|     SSE2NEON_WHEN(count)                                           \
 | |
|     (SSE2NEON_OBSTRUCT(SSE2NEON_REPEAT_INDIRECT)()(                \
 | |
|         SSE2NEON_DEC(count), macro,                                \
 | |
|         __VA_ARGS__) SSE2NEON_OBSTRUCT(macro)(SSE2NEON_DEC(count), \
 | |
|                                               __VA_ARGS__))
 | |
| #define SSE2NEON_REPEAT_INDIRECT() SSE2NEON_REPEAT
 | |
| 
 | |
| #define SSE2NEON_SIZE_OF_byte 8
 | |
| #define SSE2NEON_NUMBER_OF_LANES_byte 16
 | |
| #define SSE2NEON_SIZE_OF_word 16
 | |
| #define SSE2NEON_NUMBER_OF_LANES_word 8
 | |
| 
 | |
| #define SSE2NEON_COMPARE_EQUAL_THEN_FILL_LANE(i, type)                         \
 | |
|     mtx[i] = vreinterpretq_m128i_##type(vceqq_##type(                          \
 | |
|         vdupq_n_##type(vgetq_lane_##type(vreinterpretq_##type##_m128i(b), i)), \
 | |
|         vreinterpretq_##type##_m128i(a)));
 | |
| 
 | |
| #define SSE2NEON_FILL_LANE(i, type) \
 | |
|     vec_b[i] =                      \
 | |
|         vdupq_n_##type(vgetq_lane_##type(vreinterpretq_##type##_m128i(b), i));
 | |
| 
 | |
| #define PCMPSTR_RANGES(a, b, mtx, data_type_prefix, type_prefix, size,        \
 | |
|                        number_of_lanes, byte_or_word)                         \
 | |
|     do {                                                                      \
 | |
|         SSE2NEON_CAT(                                                         \
 | |
|             data_type_prefix,                                                 \
 | |
|             SSE2NEON_CAT(size,                                                \
 | |
|                          SSE2NEON_CAT(x, SSE2NEON_CAT(number_of_lanes, _t)))) \
 | |
|         vec_b[number_of_lanes];                                               \
 | |
|         __m128i mask = SSE2NEON_IIF(byte_or_word)(                            \
 | |
|             vreinterpretq_m128i_u16(vdupq_n_u16(0xff)),                       \
 | |
|             vreinterpretq_m128i_u32(vdupq_n_u32(0xffff)));                    \
 | |
|         SSE2NEON_EVAL(SSE2NEON_REPEAT(number_of_lanes, SSE2NEON_FILL_LANE,    \
 | |
|                                       SSE2NEON_CAT(type_prefix, size)))       \
 | |
|         for (int i = 0; i < number_of_lanes; i++) {                           \
 | |
|             mtx[i] = SSE2NEON_CAT(vreinterpretq_m128i_u,                      \
 | |
|                                   size)(SSE2NEON_CAT(vbslq_u, size)(          \
 | |
|                 SSE2NEON_CAT(vreinterpretq_u,                                 \
 | |
|                              SSE2NEON_CAT(size, _m128i))(mask),               \
 | |
|                 SSE2NEON_CAT(vcgeq_, SSE2NEON_CAT(type_prefix, size))(        \
 | |
|                     vec_b[i],                                                 \
 | |
|                     SSE2NEON_CAT(                                             \
 | |
|                         vreinterpretq_,                                       \
 | |
|                         SSE2NEON_CAT(type_prefix,                             \
 | |
|                                      SSE2NEON_CAT(size, _m128i(a))))),        \
 | |
|                 SSE2NEON_CAT(vcleq_, SSE2NEON_CAT(type_prefix, size))(        \
 | |
|                     vec_b[i],                                                 \
 | |
|                     SSE2NEON_CAT(                                             \
 | |
|                         vreinterpretq_,                                       \
 | |
|                         SSE2NEON_CAT(type_prefix,                             \
 | |
|                                      SSE2NEON_CAT(size, _m128i(a)))))));      \
 | |
|         }                                                                     \
 | |
|     } while (0)
 | |
| 
 | |
| #define PCMPSTR_EQ(a, b, mtx, size, number_of_lanes)                         \
 | |
|     do {                                                                     \
 | |
|         SSE2NEON_EVAL(SSE2NEON_REPEAT(number_of_lanes,                       \
 | |
|                                       SSE2NEON_COMPARE_EQUAL_THEN_FILL_LANE, \
 | |
|                                       SSE2NEON_CAT(u, size)))                \
 | |
|     } while (0)
 | |
| 
 | |
| #define SSE2NEON_CMP_EQUAL_ANY_IMPL(type)                                     \
 | |
|     static int _sse2neon_cmp_##type##_equal_any(__m128i a, int la, __m128i b, \
 | |
|                                                 int lb)                       \
 | |
|     {                                                                         \
 | |
|         __m128i mtx[16];                                                      \
 | |
|         PCMPSTR_EQ(a, b, mtx, SSE2NEON_CAT(SSE2NEON_SIZE_OF_, type),          \
 | |
|                    SSE2NEON_CAT(SSE2NEON_NUMBER_OF_LANES_, type));            \
 | |
|         return SSE2NEON_CAT(                                                  \
 | |
|             _sse2neon_aggregate_equal_any_,                                   \
 | |
|             SSE2NEON_CAT(                                                     \
 | |
|                 SSE2NEON_CAT(SSE2NEON_SIZE_OF_, type),                        \
 | |
|                 SSE2NEON_CAT(x, SSE2NEON_CAT(SSE2NEON_NUMBER_OF_LANES_,       \
 | |
|                                              type))))(la, lb, mtx);           \
 | |
|     }
 | |
| 
 | |
| #define SSE2NEON_CMP_RANGES_IMPL(type, data_type, us, byte_or_word)            \
 | |
|     static int _sse2neon_cmp_##us##type##_ranges(__m128i a, int la, __m128i b, \
 | |
|                                                  int lb)                       \
 | |
|     {                                                                          \
 | |
|         __m128i mtx[16];                                                       \
 | |
|         PCMPSTR_RANGES(                                                        \
 | |
|             a, b, mtx, data_type, us, SSE2NEON_CAT(SSE2NEON_SIZE_OF_, type),   \
 | |
|             SSE2NEON_CAT(SSE2NEON_NUMBER_OF_LANES_, type), byte_or_word);      \
 | |
|         return SSE2NEON_CAT(                                                   \
 | |
|             _sse2neon_aggregate_ranges_,                                       \
 | |
|             SSE2NEON_CAT(                                                      \
 | |
|                 SSE2NEON_CAT(SSE2NEON_SIZE_OF_, type),                         \
 | |
|                 SSE2NEON_CAT(x, SSE2NEON_CAT(SSE2NEON_NUMBER_OF_LANES_,        \
 | |
|                                              type))))(la, lb, mtx);            \
 | |
|     }
 | |
| 
 | |
| #define SSE2NEON_CMP_EQUAL_ORDERED_IMPL(type)                                  \
 | |
|     static int _sse2neon_cmp_##type##_equal_ordered(__m128i a, int la,         \
 | |
|                                                     __m128i b, int lb)         \
 | |
|     {                                                                          \
 | |
|         __m128i mtx[16];                                                       \
 | |
|         PCMPSTR_EQ(a, b, mtx, SSE2NEON_CAT(SSE2NEON_SIZE_OF_, type),           \
 | |
|                    SSE2NEON_CAT(SSE2NEON_NUMBER_OF_LANES_, type));             \
 | |
|         return SSE2NEON_CAT(                                                   \
 | |
|             _sse2neon_aggregate_equal_ordered_,                                \
 | |
|             SSE2NEON_CAT(                                                      \
 | |
|                 SSE2NEON_CAT(SSE2NEON_SIZE_OF_, type),                         \
 | |
|                 SSE2NEON_CAT(x,                                                \
 | |
|                              SSE2NEON_CAT(SSE2NEON_NUMBER_OF_LANES_, type))))( \
 | |
|             SSE2NEON_CAT(SSE2NEON_NUMBER_OF_LANES_, type), la, lb, mtx);       \
 | |
|     }
 | |
| 
 | |
| static int _sse2neon_aggregate_equal_any_8x16(int la, int lb, __m128i mtx[16])
 | |
| {
 | |
|     int res = 0;
 | |
|     int m = (1 << la) - 1;
 | |
|     uint8x8_t vec_mask = vld1_u8(_sse2neon_cmpestr_mask8b);
 | |
|     uint8x8_t t_lo = vtst_u8(vdup_n_u8(m & 0xff), vec_mask);
 | |
|     uint8x8_t t_hi = vtst_u8(vdup_n_u8(m >> 8), vec_mask);
 | |
|     uint8x16_t vec = vcombine_u8(t_lo, t_hi);
 | |
|     for (int j = 0; j < lb; j++) {
 | |
|         mtx[j] = vreinterpretq_m128i_u8(
 | |
|             vandq_u8(vec, vreinterpretq_u8_m128i(mtx[j])));
 | |
|         mtx[j] = vreinterpretq_m128i_u8(
 | |
|             vshrq_n_u8(vreinterpretq_u8_m128i(mtx[j]), 7));
 | |
|         int tmp = _sse2neon_vaddvq_u8(vreinterpretq_u8_m128i(mtx[j])) ? 1 : 0;
 | |
|         res |= (tmp << j);
 | |
|     }
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| static int _sse2neon_aggregate_equal_any_16x8(int la, int lb, __m128i mtx[16])
 | |
| {
 | |
|     int res = 0;
 | |
|     int m = (1 << la) - 1;
 | |
|     uint16x8_t vec =
 | |
|         vtstq_u16(vdupq_n_u16(m), vld1q_u16(_sse2neon_cmpestr_mask16b));
 | |
|     for (int j = 0; j < lb; j++) {
 | |
|         mtx[j] = vreinterpretq_m128i_u16(
 | |
|             vandq_u16(vec, vreinterpretq_u16_m128i(mtx[j])));
 | |
|         mtx[j] = vreinterpretq_m128i_u16(
 | |
|             vshrq_n_u16(vreinterpretq_u16_m128i(mtx[j]), 15));
 | |
|         int tmp = _sse2neon_vaddvq_u16(vreinterpretq_u16_m128i(mtx[j])) ? 1 : 0;
 | |
|         res |= (tmp << j);
 | |
|     }
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| /* clang-format off */
 | |
| #define SSE2NEON_GENERATE_CMP_EQUAL_ANY(prefix) \
 | |
|     prefix##IMPL(byte) \
 | |
|     prefix##IMPL(word)
 | |
| /* clang-format on */
 | |
| 
 | |
| SSE2NEON_GENERATE_CMP_EQUAL_ANY(SSE2NEON_CMP_EQUAL_ANY_)
 | |
| 
 | |
| static int _sse2neon_aggregate_ranges_16x8(int la, int lb, __m128i mtx[16])
 | |
| {
 | |
|     int res = 0;
 | |
|     int m = (1 << la) - 1;
 | |
|     uint16x8_t vec =
 | |
|         vtstq_u16(vdupq_n_u16(m), vld1q_u16(_sse2neon_cmpestr_mask16b));
 | |
|     for (int j = 0; j < lb; j++) {
 | |
|         mtx[j] = vreinterpretq_m128i_u16(
 | |
|             vandq_u16(vec, vreinterpretq_u16_m128i(mtx[j])));
 | |
|         mtx[j] = vreinterpretq_m128i_u16(
 | |
|             vshrq_n_u16(vreinterpretq_u16_m128i(mtx[j]), 15));
 | |
|         __m128i tmp = vreinterpretq_m128i_u32(
 | |
|             vshrq_n_u32(vreinterpretq_u32_m128i(mtx[j]), 16));
 | |
|         uint32x4_t vec_res = vandq_u32(vreinterpretq_u32_m128i(mtx[j]),
 | |
|                                        vreinterpretq_u32_m128i(tmp));
 | |
| #if defined(__aarch64__) || defined(_M_ARM64)
 | |
|         int t = vaddvq_u32(vec_res) ? 1 : 0;
 | |
| #else
 | |
|         uint64x2_t sumh = vpaddlq_u32(vec_res);
 | |
|         int t = vgetq_lane_u64(sumh, 0) + vgetq_lane_u64(sumh, 1);
 | |
| #endif
 | |
|         res |= (t << j);
 | |
|     }
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| static int _sse2neon_aggregate_ranges_8x16(int la, int lb, __m128i mtx[16])
 | |
| {
 | |
|     int res = 0;
 | |
|     int m = (1 << la) - 1;
 | |
|     uint8x8_t vec_mask = vld1_u8(_sse2neon_cmpestr_mask8b);
 | |
|     uint8x8_t t_lo = vtst_u8(vdup_n_u8(m & 0xff), vec_mask);
 | |
|     uint8x8_t t_hi = vtst_u8(vdup_n_u8(m >> 8), vec_mask);
 | |
|     uint8x16_t vec = vcombine_u8(t_lo, t_hi);
 | |
|     for (int j = 0; j < lb; j++) {
 | |
|         mtx[j] = vreinterpretq_m128i_u8(
 | |
|             vandq_u8(vec, vreinterpretq_u8_m128i(mtx[j])));
 | |
|         mtx[j] = vreinterpretq_m128i_u8(
 | |
|             vshrq_n_u8(vreinterpretq_u8_m128i(mtx[j]), 7));
 | |
|         __m128i tmp = vreinterpretq_m128i_u16(
 | |
|             vshrq_n_u16(vreinterpretq_u16_m128i(mtx[j]), 8));
 | |
|         uint16x8_t vec_res = vandq_u16(vreinterpretq_u16_m128i(mtx[j]),
 | |
|                                        vreinterpretq_u16_m128i(tmp));
 | |
|         int t = _sse2neon_vaddvq_u16(vec_res) ? 1 : 0;
 | |
|         res |= (t << j);
 | |
|     }
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| #define SSE2NEON_CMP_RANGES_IS_BYTE 1
 | |
| #define SSE2NEON_CMP_RANGES_IS_WORD 0
 | |
| 
 | |
| /* clang-format off */
 | |
| #define SSE2NEON_GENERATE_CMP_RANGES(prefix)             \
 | |
|     prefix##IMPL(byte, uint, u, prefix##IS_BYTE)         \
 | |
|     prefix##IMPL(byte, int, s, prefix##IS_BYTE)          \
 | |
|     prefix##IMPL(word, uint, u, prefix##IS_WORD)         \
 | |
|     prefix##IMPL(word, int, s, prefix##IS_WORD)
 | |
| /* clang-format on */
 | |
| 
 | |
| SSE2NEON_GENERATE_CMP_RANGES(SSE2NEON_CMP_RANGES_)
 | |
| 
 | |
| #undef SSE2NEON_CMP_RANGES_IS_BYTE
 | |
| #undef SSE2NEON_CMP_RANGES_IS_WORD
 | |
| 
 | |
| static int _sse2neon_cmp_byte_equal_each(__m128i a, int la, __m128i b, int lb)
 | |
| {
 | |
|     uint8x16_t mtx =
 | |
|         vceqq_u8(vreinterpretq_u8_m128i(a), vreinterpretq_u8_m128i(b));
 | |
|     int m0 = (la < lb) ? 0 : ((1 << la) - (1 << lb));
 | |
|     int m1 = 0x10000 - (1 << la);
 | |
|     int tb = 0x10000 - (1 << lb);
 | |
|     uint8x8_t vec_mask, vec0_lo, vec0_hi, vec1_lo, vec1_hi;
 | |
|     uint8x8_t tmp_lo, tmp_hi, res_lo, res_hi;
 | |
|     vec_mask = vld1_u8(_sse2neon_cmpestr_mask8b);
 | |
|     vec0_lo = vtst_u8(vdup_n_u8(m0), vec_mask);
 | |
|     vec0_hi = vtst_u8(vdup_n_u8(m0 >> 8), vec_mask);
 | |
|     vec1_lo = vtst_u8(vdup_n_u8(m1), vec_mask);
 | |
|     vec1_hi = vtst_u8(vdup_n_u8(m1 >> 8), vec_mask);
 | |
|     tmp_lo = vtst_u8(vdup_n_u8(tb), vec_mask);
 | |
|     tmp_hi = vtst_u8(vdup_n_u8(tb >> 8), vec_mask);
 | |
| 
 | |
|     res_lo = vbsl_u8(vec0_lo, vdup_n_u8(0), vget_low_u8(mtx));
 | |
|     res_hi = vbsl_u8(vec0_hi, vdup_n_u8(0), vget_high_u8(mtx));
 | |
|     res_lo = vbsl_u8(vec1_lo, tmp_lo, res_lo);
 | |
|     res_hi = vbsl_u8(vec1_hi, tmp_hi, res_hi);
 | |
|     res_lo = vand_u8(res_lo, vec_mask);
 | |
|     res_hi = vand_u8(res_hi, vec_mask);
 | |
| 
 | |
|     int res = _sse2neon_vaddv_u8(res_lo) + (_sse2neon_vaddv_u8(res_hi) << 8);
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| static int _sse2neon_cmp_word_equal_each(__m128i a, int la, __m128i b, int lb)
 | |
| {
 | |
|     uint16x8_t mtx =
 | |
|         vceqq_u16(vreinterpretq_u16_m128i(a), vreinterpretq_u16_m128i(b));
 | |
|     int m0 = (la < lb) ? 0 : ((1 << la) - (1 << lb));
 | |
|     int m1 = 0x100 - (1 << la);
 | |
|     int tb = 0x100 - (1 << lb);
 | |
|     uint16x8_t vec_mask = vld1q_u16(_sse2neon_cmpestr_mask16b);
 | |
|     uint16x8_t vec0 = vtstq_u16(vdupq_n_u16(m0), vec_mask);
 | |
|     uint16x8_t vec1 = vtstq_u16(vdupq_n_u16(m1), vec_mask);
 | |
|     uint16x8_t tmp = vtstq_u16(vdupq_n_u16(tb), vec_mask);
 | |
|     mtx = vbslq_u16(vec0, vdupq_n_u16(0), mtx);
 | |
|     mtx = vbslq_u16(vec1, tmp, mtx);
 | |
|     mtx = vandq_u16(mtx, vec_mask);
 | |
|     return _sse2neon_vaddvq_u16(mtx);
 | |
| }
 | |
| 
 | |
| #define SSE2NEON_AGGREGATE_EQUAL_ORDER_IS_UBYTE 1
 | |
| #define SSE2NEON_AGGREGATE_EQUAL_ORDER_IS_UWORD 0
 | |
| 
 | |
| #define SSE2NEON_AGGREGATE_EQUAL_ORDER_IMPL(size, number_of_lanes, data_type)  \
 | |
|     static int _sse2neon_aggregate_equal_ordered_##size##x##number_of_lanes(   \
 | |
|         int bound, int la, int lb, __m128i mtx[16])                            \
 | |
|     {                                                                          \
 | |
|         int res = 0;                                                           \
 | |
|         int m1 = SSE2NEON_IIF(data_type)(0x10000, 0x100) - (1 << la);          \
 | |
|         uint##size##x8_t vec_mask = SSE2NEON_IIF(data_type)(                   \
 | |
|             vld1_u##size(_sse2neon_cmpestr_mask##size##b),                     \
 | |
|             vld1q_u##size(_sse2neon_cmpestr_mask##size##b));                   \
 | |
|         uint##size##x##number_of_lanes##_t vec1 = SSE2NEON_IIF(data_type)(     \
 | |
|             vcombine_u##size(vtst_u##size(vdup_n_u##size(m1), vec_mask),       \
 | |
|                              vtst_u##size(vdup_n_u##size(m1 >> 8), vec_mask)), \
 | |
|             vtstq_u##size(vdupq_n_u##size(m1), vec_mask));                     \
 | |
|         uint##size##x##number_of_lanes##_t vec_minusone = vdupq_n_u##size(-1); \
 | |
|         uint##size##x##number_of_lanes##_t vec_zero = vdupq_n_u##size(0);      \
 | |
|         for (int j = 0; j < lb; j++) {                                         \
 | |
|             mtx[j] = vreinterpretq_m128i_u##size(vbslq_u##size(                \
 | |
|                 vec1, vec_minusone, vreinterpretq_u##size##_m128i(mtx[j])));   \
 | |
|         }                                                                      \
 | |
|         for (int j = lb; j < bound; j++) {                                     \
 | |
|             mtx[j] = vreinterpretq_m128i_u##size(                              \
 | |
|                 vbslq_u##size(vec1, vec_minusone, vec_zero));                  \
 | |
|         }                                                                      \
 | |
|         unsigned SSE2NEON_IIF(data_type)(char, short) *ptr =                   \
 | |
|             (unsigned SSE2NEON_IIF(data_type)(char, short) *) mtx;             \
 | |
|         for (int i = 0; i < bound; i++) {                                      \
 | |
|             int val = 1;                                                       \
 | |
|             for (int j = 0, k = i; j < bound - i && k < bound; j++, k++)       \
 | |
|                 val &= ptr[k * bound + j];                                     \
 | |
|             res += val << i;                                                   \
 | |
|         }                                                                      \
 | |
|         return res;                                                            \
 | |
|     }
 | |
| 
 | |
| /* clang-format off */
 | |
| #define SSE2NEON_GENERATE_AGGREGATE_EQUAL_ORDER(prefix) \
 | |
|     prefix##IMPL(8, 16, prefix##IS_UBYTE)               \
 | |
|     prefix##IMPL(16, 8, prefix##IS_UWORD)
 | |
| /* clang-format on */
 | |
| 
 | |
| SSE2NEON_GENERATE_AGGREGATE_EQUAL_ORDER(SSE2NEON_AGGREGATE_EQUAL_ORDER_)
 | |
| 
 | |
| #undef SSE2NEON_AGGREGATE_EQUAL_ORDER_IS_UBYTE
 | |
| #undef SSE2NEON_AGGREGATE_EQUAL_ORDER_IS_UWORD
 | |
| 
 | |
| /* clang-format off */
 | |
| #define SSE2NEON_GENERATE_CMP_EQUAL_ORDERED(prefix) \
 | |
|     prefix##IMPL(byte)                              \
 | |
|     prefix##IMPL(word)
 | |
| /* clang-format on */
 | |
| 
 | |
| SSE2NEON_GENERATE_CMP_EQUAL_ORDERED(SSE2NEON_CMP_EQUAL_ORDERED_)
 | |
| 
 | |
| #define SSE2NEON_CMPESTR_LIST                          \
 | |
|     _(CMP_UBYTE_EQUAL_ANY, cmp_byte_equal_any)         \
 | |
|     _(CMP_UWORD_EQUAL_ANY, cmp_word_equal_any)         \
 | |
|     _(CMP_SBYTE_EQUAL_ANY, cmp_byte_equal_any)         \
 | |
|     _(CMP_SWORD_EQUAL_ANY, cmp_word_equal_any)         \
 | |
|     _(CMP_UBYTE_RANGES, cmp_ubyte_ranges)              \
 | |
|     _(CMP_UWORD_RANGES, cmp_uword_ranges)              \
 | |
|     _(CMP_SBYTE_RANGES, cmp_sbyte_ranges)              \
 | |
|     _(CMP_SWORD_RANGES, cmp_sword_ranges)              \
 | |
|     _(CMP_UBYTE_EQUAL_EACH, cmp_byte_equal_each)       \
 | |
|     _(CMP_UWORD_EQUAL_EACH, cmp_word_equal_each)       \
 | |
|     _(CMP_SBYTE_EQUAL_EACH, cmp_byte_equal_each)       \
 | |
|     _(CMP_SWORD_EQUAL_EACH, cmp_word_equal_each)       \
 | |
|     _(CMP_UBYTE_EQUAL_ORDERED, cmp_byte_equal_ordered) \
 | |
|     _(CMP_UWORD_EQUAL_ORDERED, cmp_word_equal_ordered) \
 | |
|     _(CMP_SBYTE_EQUAL_ORDERED, cmp_byte_equal_ordered) \
 | |
|     _(CMP_SWORD_EQUAL_ORDERED, cmp_word_equal_ordered)
 | |
| 
 | |
| enum {
 | |
| #define _(name, func_suffix) name,
 | |
|     SSE2NEON_CMPESTR_LIST
 | |
| #undef _
 | |
| };
 | |
| typedef int (*cmpestr_func_t)(__m128i a, int la, __m128i b, int lb);
 | |
| static cmpestr_func_t _sse2neon_cmpfunc_table[] = {
 | |
| #define _(name, func_suffix) _sse2neon_##func_suffix,
 | |
|     SSE2NEON_CMPESTR_LIST
 | |
| #undef _
 | |
| };
 | |
| 
 | |
| FORCE_INLINE int _sse2neon_sido_negative(int res, int lb, int imm8, int bound)
 | |
| {
 | |
|     switch (imm8 & 0x30) {
 | |
|     case _SIDD_NEGATIVE_POLARITY:
 | |
|         res ^= 0xffffffff;
 | |
|         break;
 | |
|     case _SIDD_MASKED_NEGATIVE_POLARITY:
 | |
|         res ^= (1 << lb) - 1;
 | |
|         break;
 | |
|     default:
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|     return res & ((bound == 8) ? 0xFF : 0xFFFF);
 | |
| }
 | |
| 
 | |
| FORCE_INLINE int _sse2neon_clz(unsigned int x)
 | |
| {
 | |
| #ifdef _MSC_VER
 | |
|     unsigned long cnt = 0;
 | |
|     if (_BitScanReverse(&cnt, x))
 | |
|         return 31 - cnt;
 | |
|     return 32;
 | |
| #else
 | |
|     return x != 0 ? __builtin_clz(x) : 32;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| FORCE_INLINE int _sse2neon_ctz(unsigned int x)
 | |
| {
 | |
| #ifdef _MSC_VER
 | |
|     unsigned long cnt = 0;
 | |
|     if (_BitScanForward(&cnt, x))
 | |
|         return cnt;
 | |
|     return 32;
 | |
| #else
 | |
|     return x != 0 ? __builtin_ctz(x) : 32;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| FORCE_INLINE int _sse2neon_ctzll(unsigned long long x)
 | |
| {
 | |
| #ifdef _MSC_VER
 | |
|     unsigned long cnt;
 | |
| #if defined(SSE2NEON_HAS_BITSCAN64)
 | |
|     if (_BitScanForward64(&cnt, x))
 | |
|         return (int) (cnt);
 | |
| #else
 | |
|     if (_BitScanForward(&cnt, (unsigned long) (x)))
 | |
|         return (int) cnt;
 | |
|     if (_BitScanForward(&cnt, (unsigned long) (x >> 32)))
 | |
|         return (int) (cnt + 32);
 | |
| #endif /* SSE2NEON_HAS_BITSCAN64 */
 | |
|     return 64;
 | |
| #else /* assume GNU compatible compilers */
 | |
|     return x != 0 ? __builtin_ctzll(x) : 64;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| #define SSE2NEON_MIN(x, y) (x) < (y) ? (x) : (y)
 | |
| 
 | |
| #define SSE2NEON_CMPSTR_SET_UPPER(var, imm) \
 | |
|     const int var = (imm & 0x01) ? 8 : 16
 | |
| 
 | |
| #define SSE2NEON_CMPESTRX_LEN_PAIR(a, b, la, lb) \
 | |
|     int tmp1 = la ^ (la >> 31);                  \
 | |
|     la = tmp1 - (la >> 31);                      \
 | |
|     int tmp2 = lb ^ (lb >> 31);                  \
 | |
|     lb = tmp2 - (lb >> 31);                      \
 | |
|     la = SSE2NEON_MIN(la, bound);                \
 | |
|     lb = SSE2NEON_MIN(lb, bound)
 | |
| 
 | |
| // Compare all pairs of character in string a and b,
 | |
| // then aggregate the result.
 | |
| // As the only difference of PCMPESTR* and PCMPISTR* is the way to calculate the
 | |
| // length of string, we use SSE2NEON_CMP{I,E}STRX_GET_LEN to get the length of
 | |
| // string a and b.
 | |
| #define SSE2NEON_COMP_AGG(a, b, la, lb, imm8, IE)                  \
 | |
|     SSE2NEON_CMPSTR_SET_UPPER(bound, imm8);                        \
 | |
|     SSE2NEON_##IE##_LEN_PAIR(a, b, la, lb);                        \
 | |
|     int r2 = (_sse2neon_cmpfunc_table[imm8 & 0x0f])(a, la, b, lb); \
 | |
|     r2 = _sse2neon_sido_negative(r2, lb, imm8, bound)
 | |
| 
 | |
| #define SSE2NEON_CMPSTR_GENERATE_INDEX(r2, bound, imm8)          \
 | |
|     return (r2 == 0) ? bound                                     \
 | |
|                      : ((imm8 & 0x40) ? (31 - _sse2neon_clz(r2)) \
 | |
|                                       : _sse2neon_ctz(r2))
 | |
| 
 | |
| #define SSE2NEON_CMPSTR_GENERATE_MASK(dst)                                     \
 | |
|     __m128i dst = vreinterpretq_m128i_u8(vdupq_n_u8(0));                       \
 | |
|     if (imm8 & 0x40) {                                                         \
 | |
|         if (bound == 8) {                                                      \
 | |
|             uint16x8_t tmp = vtstq_u16(vdupq_n_u16(r2),                        \
 | |
|                                        vld1q_u16(_sse2neon_cmpestr_mask16b));  \
 | |
|             dst = vreinterpretq_m128i_u16(vbslq_u16(                           \
 | |
|                 tmp, vdupq_n_u16(-1), vreinterpretq_u16_m128i(dst)));          \
 | |
|         } else {                                                               \
 | |
|             uint8x16_t vec_r2 =                                                \
 | |
|                 vcombine_u8(vdup_n_u8(r2), vdup_n_u8(r2 >> 8));                \
 | |
|             uint8x16_t tmp =                                                   \
 | |
|                 vtstq_u8(vec_r2, vld1q_u8(_sse2neon_cmpestr_mask8b));          \
 | |
|             dst = vreinterpretq_m128i_u8(                                      \
 | |
|                 vbslq_u8(tmp, vdupq_n_u8(-1), vreinterpretq_u8_m128i(dst)));   \
 | |
|         }                                                                      \
 | |
|     } else {                                                                   \
 | |
|         if (bound == 16) {                                                     \
 | |
|             dst = vreinterpretq_m128i_u16(                                     \
 | |
|                 vsetq_lane_u16(r2 & 0xffff, vreinterpretq_u16_m128i(dst), 0)); \
 | |
|         } else {                                                               \
 | |
|             dst = vreinterpretq_m128i_u8(                                      \
 | |
|                 vsetq_lane_u8(r2 & 0xff, vreinterpretq_u8_m128i(dst), 0));     \
 | |
|         }                                                                      \
 | |
|     }                                                                          \
 | |
|     return dst
 | |
| 
 | |
| // Compare packed strings in a and b with lengths la and lb using the control
 | |
| // in imm8, and returns 1 if b did not contain a null character and the
 | |
| // resulting mask was zero, and 0 otherwise.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpestra
 | |
| FORCE_INLINE int _mm_cmpestra(__m128i a,
 | |
|                               int la,
 | |
|                               __m128i b,
 | |
|                               int lb,
 | |
|                               const int imm8)
 | |
| {
 | |
|     int lb_cpy = lb;
 | |
|     SSE2NEON_COMP_AGG(a, b, la, lb, imm8, CMPESTRX);
 | |
|     return !r2 & (lb_cpy > bound);
 | |
| }
 | |
| 
 | |
| // Compare packed strings in a and b with lengths la and lb using the control in
 | |
| // imm8, and returns 1 if the resulting mask was non-zero, and 0 otherwise.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpestrc
 | |
| FORCE_INLINE int _mm_cmpestrc(__m128i a,
 | |
|                               int la,
 | |
|                               __m128i b,
 | |
|                               int lb,
 | |
|                               const int imm8)
 | |
| {
 | |
|     SSE2NEON_COMP_AGG(a, b, la, lb, imm8, CMPESTRX);
 | |
|     return r2 != 0;
 | |
| }
 | |
| 
 | |
| // Compare packed strings in a and b with lengths la and lb using the control
 | |
| // in imm8, and store the generated index in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpestri
 | |
| FORCE_INLINE int _mm_cmpestri(__m128i a,
 | |
|                               int la,
 | |
|                               __m128i b,
 | |
|                               int lb,
 | |
|                               const int imm8)
 | |
| {
 | |
|     SSE2NEON_COMP_AGG(a, b, la, lb, imm8, CMPESTRX);
 | |
|     SSE2NEON_CMPSTR_GENERATE_INDEX(r2, bound, imm8);
 | |
| }
 | |
| 
 | |
| // Compare packed strings in a and b with lengths la and lb using the control
 | |
| // in imm8, and store the generated mask in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpestrm
 | |
| FORCE_INLINE __m128i
 | |
| _mm_cmpestrm(__m128i a, int la, __m128i b, int lb, const int imm8)
 | |
| {
 | |
|     SSE2NEON_COMP_AGG(a, b, la, lb, imm8, CMPESTRX);
 | |
|     SSE2NEON_CMPSTR_GENERATE_MASK(dst);
 | |
| }
 | |
| 
 | |
| // Compare packed strings in a and b with lengths la and lb using the control in
 | |
| // imm8, and returns bit 0 of the resulting bit mask.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpestro
 | |
| FORCE_INLINE int _mm_cmpestro(__m128i a,
 | |
|                               int la,
 | |
|                               __m128i b,
 | |
|                               int lb,
 | |
|                               const int imm8)
 | |
| {
 | |
|     SSE2NEON_COMP_AGG(a, b, la, lb, imm8, CMPESTRX);
 | |
|     return r2 & 1;
 | |
| }
 | |
| 
 | |
| // Compare packed strings in a and b with lengths la and lb using the control in
 | |
| // imm8, and returns 1 if any character in a was null, and 0 otherwise.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpestrs
 | |
| FORCE_INLINE int _mm_cmpestrs(__m128i a,
 | |
|                               int la,
 | |
|                               __m128i b,
 | |
|                               int lb,
 | |
|                               const int imm8)
 | |
| {
 | |
|     (void) a;
 | |
|     (void) b;
 | |
|     (void) lb;
 | |
|     SSE2NEON_CMPSTR_SET_UPPER(bound, imm8);
 | |
|     return la <= (bound - 1);
 | |
| }
 | |
| 
 | |
| // Compare packed strings in a and b with lengths la and lb using the control in
 | |
| // imm8, and returns 1 if any character in b was null, and 0 otherwise.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpestrz
 | |
| FORCE_INLINE int _mm_cmpestrz(__m128i a,
 | |
|                               int la,
 | |
|                               __m128i b,
 | |
|                               int lb,
 | |
|                               const int imm8)
 | |
| {
 | |
|     (void) a;
 | |
|     (void) b;
 | |
|     (void) la;
 | |
|     SSE2NEON_CMPSTR_SET_UPPER(bound, imm8);
 | |
|     return lb <= (bound - 1);
 | |
| }
 | |
| 
 | |
| #define SSE2NEON_CMPISTRX_LENGTH(str, len, imm8)                         \
 | |
|     do {                                                                 \
 | |
|         if (imm8 & 0x01) {                                               \
 | |
|             uint16x8_t equal_mask_##str =                                \
 | |
|                 vceqq_u16(vreinterpretq_u16_m128i(str), vdupq_n_u16(0)); \
 | |
|             uint8x8_t res_##str = vshrn_n_u16(equal_mask_##str, 4);      \
 | |
|             uint64_t matches_##str =                                     \
 | |
|                 vget_lane_u64(vreinterpret_u64_u8(res_##str), 0);        \
 | |
|             len = _sse2neon_ctzll(matches_##str) >> 3;                   \
 | |
|         } else {                                                         \
 | |
|             uint16x8_t equal_mask_##str = vreinterpretq_u16_u8(          \
 | |
|                 vceqq_u8(vreinterpretq_u8_m128i(str), vdupq_n_u8(0)));   \
 | |
|             uint8x8_t res_##str = vshrn_n_u16(equal_mask_##str, 4);      \
 | |
|             uint64_t matches_##str =                                     \
 | |
|                 vget_lane_u64(vreinterpret_u64_u8(res_##str), 0);        \
 | |
|             len = _sse2neon_ctzll(matches_##str) >> 2;                   \
 | |
|         }                                                                \
 | |
|     } while (0)
 | |
| 
 | |
| #define SSE2NEON_CMPISTRX_LEN_PAIR(a, b, la, lb) \
 | |
|     int la, lb;                                  \
 | |
|     do {                                         \
 | |
|         SSE2NEON_CMPISTRX_LENGTH(a, la, imm8);   \
 | |
|         SSE2NEON_CMPISTRX_LENGTH(b, lb, imm8);   \
 | |
|     } while (0)
 | |
| 
 | |
| // Compare packed strings with implicit lengths in a and b using the control in
 | |
| // imm8, and returns 1 if b did not contain a null character and the resulting
 | |
| // mask was zero, and 0 otherwise.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpistra
 | |
| FORCE_INLINE int _mm_cmpistra(__m128i a, __m128i b, const int imm8)
 | |
| {
 | |
|     SSE2NEON_COMP_AGG(a, b, la, lb, imm8, CMPISTRX);
 | |
|     return !r2 & (lb >= bound);
 | |
| }
 | |
| 
 | |
| // Compare packed strings with implicit lengths in a and b using the control in
 | |
| // imm8, and returns 1 if the resulting mask was non-zero, and 0 otherwise.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpistrc
 | |
| FORCE_INLINE int _mm_cmpistrc(__m128i a, __m128i b, const int imm8)
 | |
| {
 | |
|     SSE2NEON_COMP_AGG(a, b, la, lb, imm8, CMPISTRX);
 | |
|     return r2 != 0;
 | |
| }
 | |
| 
 | |
| // Compare packed strings with implicit lengths in a and b using the control in
 | |
| // imm8, and store the generated index in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpistri
 | |
| FORCE_INLINE int _mm_cmpistri(__m128i a, __m128i b, const int imm8)
 | |
| {
 | |
|     SSE2NEON_COMP_AGG(a, b, la, lb, imm8, CMPISTRX);
 | |
|     SSE2NEON_CMPSTR_GENERATE_INDEX(r2, bound, imm8);
 | |
| }
 | |
| 
 | |
| // Compare packed strings with implicit lengths in a and b using the control in
 | |
| // imm8, and store the generated mask in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpistrm
 | |
| FORCE_INLINE __m128i _mm_cmpistrm(__m128i a, __m128i b, const int imm8)
 | |
| {
 | |
|     SSE2NEON_COMP_AGG(a, b, la, lb, imm8, CMPISTRX);
 | |
|     SSE2NEON_CMPSTR_GENERATE_MASK(dst);
 | |
| }
 | |
| 
 | |
| // Compare packed strings with implicit lengths in a and b using the control in
 | |
| // imm8, and returns bit 0 of the resulting bit mask.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpistro
 | |
| FORCE_INLINE int _mm_cmpistro(__m128i a, __m128i b, const int imm8)
 | |
| {
 | |
|     SSE2NEON_COMP_AGG(a, b, la, lb, imm8, CMPISTRX);
 | |
|     return r2 & 1;
 | |
| }
 | |
| 
 | |
| // Compare packed strings with implicit lengths in a and b using the control in
 | |
| // imm8, and returns 1 if any character in a was null, and 0 otherwise.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpistrs
 | |
| FORCE_INLINE int _mm_cmpistrs(__m128i a, __m128i b, const int imm8)
 | |
| {
 | |
|     (void) b;
 | |
|     SSE2NEON_CMPSTR_SET_UPPER(bound, imm8);
 | |
|     int la;
 | |
|     SSE2NEON_CMPISTRX_LENGTH(a, la, imm8);
 | |
|     return la <= (bound - 1);
 | |
| }
 | |
| 
 | |
| // Compare packed strings with implicit lengths in a and b using the control in
 | |
| // imm8, and returns 1 if any character in b was null, and 0 otherwise.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpistrz
 | |
| FORCE_INLINE int _mm_cmpistrz(__m128i a, __m128i b, const int imm8)
 | |
| {
 | |
|     (void) a;
 | |
|     SSE2NEON_CMPSTR_SET_UPPER(bound, imm8);
 | |
|     int lb;
 | |
|     SSE2NEON_CMPISTRX_LENGTH(b, lb, imm8);
 | |
|     return lb <= (bound - 1);
 | |
| }
 | |
| 
 | |
| // Compares the 2 signed 64-bit integers in a and the 2 signed 64-bit integers
 | |
| // in b for greater than.
 | |
| FORCE_INLINE __m128i _mm_cmpgt_epi64(__m128i a, __m128i b)
 | |
| {
 | |
| #if defined(__aarch64__) || defined(_M_ARM64)
 | |
|     return vreinterpretq_m128i_u64(
 | |
|         vcgtq_s64(vreinterpretq_s64_m128i(a), vreinterpretq_s64_m128i(b)));
 | |
| #else
 | |
|     return vreinterpretq_m128i_s64(vshrq_n_s64(
 | |
|         vqsubq_s64(vreinterpretq_s64_m128i(b), vreinterpretq_s64_m128i(a)),
 | |
|         63));
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // Starting with the initial value in crc, accumulates a CRC32 value for
 | |
| // unsigned 16-bit integer v, and stores the result in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_crc32_u16
 | |
| FORCE_INLINE uint32_t _mm_crc32_u16(uint32_t crc, uint16_t v)
 | |
| {
 | |
| #if defined(__aarch64__) && defined(__ARM_FEATURE_CRC32)
 | |
|     __asm__ __volatile__("crc32ch %w[c], %w[c], %w[v]\n\t"
 | |
|                          : [c] "+r"(crc)
 | |
|                          : [v] "r"(v));
 | |
| #elif ((__ARM_ARCH == 8) && defined(__ARM_FEATURE_CRC32)) || \
 | |
|     (defined(_M_ARM64) && !defined(__clang__))
 | |
|     crc = __crc32ch(crc, v);
 | |
| #else
 | |
|     crc = _mm_crc32_u8(crc, v & 0xff);
 | |
|     crc = _mm_crc32_u8(crc, (v >> 8) & 0xff);
 | |
| #endif
 | |
|     return crc;
 | |
| }
 | |
| 
 | |
| // Starting with the initial value in crc, accumulates a CRC32 value for
 | |
| // unsigned 32-bit integer v, and stores the result in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_crc32_u32
 | |
| FORCE_INLINE uint32_t _mm_crc32_u32(uint32_t crc, uint32_t v)
 | |
| {
 | |
| #if defined(__aarch64__) && defined(__ARM_FEATURE_CRC32)
 | |
|     __asm__ __volatile__("crc32cw %w[c], %w[c], %w[v]\n\t"
 | |
|                          : [c] "+r"(crc)
 | |
|                          : [v] "r"(v));
 | |
| #elif ((__ARM_ARCH == 8) && defined(__ARM_FEATURE_CRC32)) || \
 | |
|     (defined(_M_ARM64) && !defined(__clang__))
 | |
|     crc = __crc32cw(crc, v);
 | |
| #else
 | |
|     crc = _mm_crc32_u16(crc, v & 0xffff);
 | |
|     crc = _mm_crc32_u16(crc, (v >> 16) & 0xffff);
 | |
| #endif
 | |
|     return crc;
 | |
| }
 | |
| 
 | |
| // Starting with the initial value in crc, accumulates a CRC32 value for
 | |
| // unsigned 64-bit integer v, and stores the result in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_crc32_u64
 | |
| FORCE_INLINE uint64_t _mm_crc32_u64(uint64_t crc, uint64_t v)
 | |
| {
 | |
| #if defined(__aarch64__) && defined(__ARM_FEATURE_CRC32)
 | |
|     __asm__ __volatile__("crc32cx %w[c], %w[c], %x[v]\n\t"
 | |
|                          : [c] "+r"(crc)
 | |
|                          : [v] "r"(v));
 | |
| #elif (defined(_M_ARM64) && !defined(__clang__))
 | |
|     crc = __crc32cd((uint32_t) crc, v);
 | |
| #else
 | |
|     crc = _mm_crc32_u32((uint32_t) (crc), v & 0xffffffff);
 | |
|     crc = _mm_crc32_u32((uint32_t) (crc), (v >> 32) & 0xffffffff);
 | |
| #endif
 | |
|     return crc;
 | |
| }
 | |
| 
 | |
| // Starting with the initial value in crc, accumulates a CRC32 value for
 | |
| // unsigned 8-bit integer v, and stores the result in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_crc32_u8
 | |
| FORCE_INLINE uint32_t _mm_crc32_u8(uint32_t crc, uint8_t v)
 | |
| {
 | |
| #if defined(__aarch64__) && defined(__ARM_FEATURE_CRC32)
 | |
|     __asm__ __volatile__("crc32cb %w[c], %w[c], %w[v]\n\t"
 | |
|                          : [c] "+r"(crc)
 | |
|                          : [v] "r"(v));
 | |
| #elif ((__ARM_ARCH == 8) && defined(__ARM_FEATURE_CRC32)) || \
 | |
|     (defined(_M_ARM64) && !defined(__clang__))
 | |
|     crc = __crc32cb(crc, v);
 | |
| #else
 | |
|     crc ^= v;
 | |
| #if defined(__ARM_FEATURE_CRYPTO)
 | |
|     // Adapted from: https://mary.rs/lab/crc32/
 | |
|     // Barrent reduction
 | |
|     uint64x2_t orig =
 | |
|         vcombine_u64(vcreate_u64((uint64_t) (crc) << 24), vcreate_u64(0x0));
 | |
|     uint64x2_t tmp = orig;
 | |
| 
 | |
|     // Polynomial P(x) of CRC32C
 | |
|     uint64_t p = 0x105EC76F1;
 | |
|     // Barrett Reduction (in bit-reflected form) constant mu_{64} = \lfloor
 | |
|     // 2^{64} / P(x) \rfloor = 0x11f91caf6
 | |
|     uint64_t mu = 0x1dea713f1;
 | |
| 
 | |
|     // Multiply by mu_{64}
 | |
|     tmp = _sse2neon_vmull_p64(vget_low_u64(tmp), vcreate_u64(mu));
 | |
|     // Divide by 2^{64} (mask away the unnecessary bits)
 | |
|     tmp =
 | |
|         vandq_u64(tmp, vcombine_u64(vcreate_u64(0xFFFFFFFF), vcreate_u64(0x0)));
 | |
|     // Multiply by P(x) (shifted left by 1 for alignment reasons)
 | |
|     tmp = _sse2neon_vmull_p64(vget_low_u64(tmp), vcreate_u64(p));
 | |
|     // Subtract original from result
 | |
|     tmp = veorq_u64(tmp, orig);
 | |
| 
 | |
|     // Extract the 'lower' (in bit-reflected sense) 32 bits
 | |
|     crc = vgetq_lane_u32(vreinterpretq_u32_u64(tmp), 1);
 | |
| #else  // Fall back to the generic table lookup approach
 | |
|     // Adapted from: https://create.stephan-brumme.com/crc32/
 | |
|     // Apply half-byte comparision algorithm for the best ratio between
 | |
|     // performance and lookup table.
 | |
| 
 | |
|     // The lookup table just needs to store every 16th entry
 | |
|     // of the standard look-up table.
 | |
|     static const uint32_t crc32_half_byte_tbl[] = {
 | |
|         0x00000000, 0x105ec76f, 0x20bd8ede, 0x30e349b1, 0x417b1dbc, 0x5125dad3,
 | |
|         0x61c69362, 0x7198540d, 0x82f63b78, 0x92a8fc17, 0xa24bb5a6, 0xb21572c9,
 | |
|         0xc38d26c4, 0xd3d3e1ab, 0xe330a81a, 0xf36e6f75,
 | |
|     };
 | |
| 
 | |
|     crc = (crc >> 4) ^ crc32_half_byte_tbl[crc & 0x0F];
 | |
|     crc = (crc >> 4) ^ crc32_half_byte_tbl[crc & 0x0F];
 | |
| #endif
 | |
| #endif
 | |
|     return crc;
 | |
| }
 | |
| 
 | |
| /* AES */
 | |
| 
 | |
| #if !defined(__ARM_FEATURE_CRYPTO) && (!defined(_M_ARM64) || defined(__clang__))
 | |
| /* clang-format off */
 | |
| #define SSE2NEON_AES_SBOX(w)                                           \
 | |
|     {                                                                  \
 | |
|         w(0x63), w(0x7c), w(0x77), w(0x7b), w(0xf2), w(0x6b), w(0x6f), \
 | |
|         w(0xc5), w(0x30), w(0x01), w(0x67), w(0x2b), w(0xfe), w(0xd7), \
 | |
|         w(0xab), w(0x76), w(0xca), w(0x82), w(0xc9), w(0x7d), w(0xfa), \
 | |
|         w(0x59), w(0x47), w(0xf0), w(0xad), w(0xd4), w(0xa2), w(0xaf), \
 | |
|         w(0x9c), w(0xa4), w(0x72), w(0xc0), w(0xb7), w(0xfd), w(0x93), \
 | |
|         w(0x26), w(0x36), w(0x3f), w(0xf7), w(0xcc), w(0x34), w(0xa5), \
 | |
|         w(0xe5), w(0xf1), w(0x71), w(0xd8), w(0x31), w(0x15), w(0x04), \
 | |
|         w(0xc7), w(0x23), w(0xc3), w(0x18), w(0x96), w(0x05), w(0x9a), \
 | |
|         w(0x07), w(0x12), w(0x80), w(0xe2), w(0xeb), w(0x27), w(0xb2), \
 | |
|         w(0x75), w(0x09), w(0x83), w(0x2c), w(0x1a), w(0x1b), w(0x6e), \
 | |
|         w(0x5a), w(0xa0), w(0x52), w(0x3b), w(0xd6), w(0xb3), w(0x29), \
 | |
|         w(0xe3), w(0x2f), w(0x84), w(0x53), w(0xd1), w(0x00), w(0xed), \
 | |
|         w(0x20), w(0xfc), w(0xb1), w(0x5b), w(0x6a), w(0xcb), w(0xbe), \
 | |
|         w(0x39), w(0x4a), w(0x4c), w(0x58), w(0xcf), w(0xd0), w(0xef), \
 | |
|         w(0xaa), w(0xfb), w(0x43), w(0x4d), w(0x33), w(0x85), w(0x45), \
 | |
|         w(0xf9), w(0x02), w(0x7f), w(0x50), w(0x3c), w(0x9f), w(0xa8), \
 | |
|         w(0x51), w(0xa3), w(0x40), w(0x8f), w(0x92), w(0x9d), w(0x38), \
 | |
|         w(0xf5), w(0xbc), w(0xb6), w(0xda), w(0x21), w(0x10), w(0xff), \
 | |
|         w(0xf3), w(0xd2), w(0xcd), w(0x0c), w(0x13), w(0xec), w(0x5f), \
 | |
|         w(0x97), w(0x44), w(0x17), w(0xc4), w(0xa7), w(0x7e), w(0x3d), \
 | |
|         w(0x64), w(0x5d), w(0x19), w(0x73), w(0x60), w(0x81), w(0x4f), \
 | |
|         w(0xdc), w(0x22), w(0x2a), w(0x90), w(0x88), w(0x46), w(0xee), \
 | |
|         w(0xb8), w(0x14), w(0xde), w(0x5e), w(0x0b), w(0xdb), w(0xe0), \
 | |
|         w(0x32), w(0x3a), w(0x0a), w(0x49), w(0x06), w(0x24), w(0x5c), \
 | |
|         w(0xc2), w(0xd3), w(0xac), w(0x62), w(0x91), w(0x95), w(0xe4), \
 | |
|         w(0x79), w(0xe7), w(0xc8), w(0x37), w(0x6d), w(0x8d), w(0xd5), \
 | |
|         w(0x4e), w(0xa9), w(0x6c), w(0x56), w(0xf4), w(0xea), w(0x65), \
 | |
|         w(0x7a), w(0xae), w(0x08), w(0xba), w(0x78), w(0x25), w(0x2e), \
 | |
|         w(0x1c), w(0xa6), w(0xb4), w(0xc6), w(0xe8), w(0xdd), w(0x74), \
 | |
|         w(0x1f), w(0x4b), w(0xbd), w(0x8b), w(0x8a), w(0x70), w(0x3e), \
 | |
|         w(0xb5), w(0x66), w(0x48), w(0x03), w(0xf6), w(0x0e), w(0x61), \
 | |
|         w(0x35), w(0x57), w(0xb9), w(0x86), w(0xc1), w(0x1d), w(0x9e), \
 | |
|         w(0xe1), w(0xf8), w(0x98), w(0x11), w(0x69), w(0xd9), w(0x8e), \
 | |
|         w(0x94), w(0x9b), w(0x1e), w(0x87), w(0xe9), w(0xce), w(0x55), \
 | |
|         w(0x28), w(0xdf), w(0x8c), w(0xa1), w(0x89), w(0x0d), w(0xbf), \
 | |
|         w(0xe6), w(0x42), w(0x68), w(0x41), w(0x99), w(0x2d), w(0x0f), \
 | |
|         w(0xb0), w(0x54), w(0xbb), w(0x16)                             \
 | |
|     }
 | |
| #define SSE2NEON_AES_RSBOX(w)                                          \
 | |
|     {                                                                  \
 | |
|         w(0x52), w(0x09), w(0x6a), w(0xd5), w(0x30), w(0x36), w(0xa5), \
 | |
|         w(0x38), w(0xbf), w(0x40), w(0xa3), w(0x9e), w(0x81), w(0xf3), \
 | |
|         w(0xd7), w(0xfb), w(0x7c), w(0xe3), w(0x39), w(0x82), w(0x9b), \
 | |
|         w(0x2f), w(0xff), w(0x87), w(0x34), w(0x8e), w(0x43), w(0x44), \
 | |
|         w(0xc4), w(0xde), w(0xe9), w(0xcb), w(0x54), w(0x7b), w(0x94), \
 | |
|         w(0x32), w(0xa6), w(0xc2), w(0x23), w(0x3d), w(0xee), w(0x4c), \
 | |
|         w(0x95), w(0x0b), w(0x42), w(0xfa), w(0xc3), w(0x4e), w(0x08), \
 | |
|         w(0x2e), w(0xa1), w(0x66), w(0x28), w(0xd9), w(0x24), w(0xb2), \
 | |
|         w(0x76), w(0x5b), w(0xa2), w(0x49), w(0x6d), w(0x8b), w(0xd1), \
 | |
|         w(0x25), w(0x72), w(0xf8), w(0xf6), w(0x64), w(0x86), w(0x68), \
 | |
|         w(0x98), w(0x16), w(0xd4), w(0xa4), w(0x5c), w(0xcc), w(0x5d), \
 | |
|         w(0x65), w(0xb6), w(0x92), w(0x6c), w(0x70), w(0x48), w(0x50), \
 | |
|         w(0xfd), w(0xed), w(0xb9), w(0xda), w(0x5e), w(0x15), w(0x46), \
 | |
|         w(0x57), w(0xa7), w(0x8d), w(0x9d), w(0x84), w(0x90), w(0xd8), \
 | |
|         w(0xab), w(0x00), w(0x8c), w(0xbc), w(0xd3), w(0x0a), w(0xf7), \
 | |
|         w(0xe4), w(0x58), w(0x05), w(0xb8), w(0xb3), w(0x45), w(0x06), \
 | |
|         w(0xd0), w(0x2c), w(0x1e), w(0x8f), w(0xca), w(0x3f), w(0x0f), \
 | |
|         w(0x02), w(0xc1), w(0xaf), w(0xbd), w(0x03), w(0x01), w(0x13), \
 | |
|         w(0x8a), w(0x6b), w(0x3a), w(0x91), w(0x11), w(0x41), w(0x4f), \
 | |
|         w(0x67), w(0xdc), w(0xea), w(0x97), w(0xf2), w(0xcf), w(0xce), \
 | |
|         w(0xf0), w(0xb4), w(0xe6), w(0x73), w(0x96), w(0xac), w(0x74), \
 | |
|         w(0x22), w(0xe7), w(0xad), w(0x35), w(0x85), w(0xe2), w(0xf9), \
 | |
|         w(0x37), w(0xe8), w(0x1c), w(0x75), w(0xdf), w(0x6e), w(0x47), \
 | |
|         w(0xf1), w(0x1a), w(0x71), w(0x1d), w(0x29), w(0xc5), w(0x89), \
 | |
|         w(0x6f), w(0xb7), w(0x62), w(0x0e), w(0xaa), w(0x18), w(0xbe), \
 | |
|         w(0x1b), w(0xfc), w(0x56), w(0x3e), w(0x4b), w(0xc6), w(0xd2), \
 | |
|         w(0x79), w(0x20), w(0x9a), w(0xdb), w(0xc0), w(0xfe), w(0x78), \
 | |
|         w(0xcd), w(0x5a), w(0xf4), w(0x1f), w(0xdd), w(0xa8), w(0x33), \
 | |
|         w(0x88), w(0x07), w(0xc7), w(0x31), w(0xb1), w(0x12), w(0x10), \
 | |
|         w(0x59), w(0x27), w(0x80), w(0xec), w(0x5f), w(0x60), w(0x51), \
 | |
|         w(0x7f), w(0xa9), w(0x19), w(0xb5), w(0x4a), w(0x0d), w(0x2d), \
 | |
|         w(0xe5), w(0x7a), w(0x9f), w(0x93), w(0xc9), w(0x9c), w(0xef), \
 | |
|         w(0xa0), w(0xe0), w(0x3b), w(0x4d), w(0xae), w(0x2a), w(0xf5), \
 | |
|         w(0xb0), w(0xc8), w(0xeb), w(0xbb), w(0x3c), w(0x83), w(0x53), \
 | |
|         w(0x99), w(0x61), w(0x17), w(0x2b), w(0x04), w(0x7e), w(0xba), \
 | |
|         w(0x77), w(0xd6), w(0x26), w(0xe1), w(0x69), w(0x14), w(0x63), \
 | |
|         w(0x55), w(0x21), w(0x0c), w(0x7d)                             \
 | |
|     }
 | |
| /* clang-format on */
 | |
| 
 | |
| /* X Macro trick. See https://en.wikipedia.org/wiki/X_Macro */
 | |
| #define SSE2NEON_AES_H0(x) (x)
 | |
| static const uint8_t _sse2neon_sbox[256] = SSE2NEON_AES_SBOX(SSE2NEON_AES_H0);
 | |
| static const uint8_t _sse2neon_rsbox[256] = SSE2NEON_AES_RSBOX(SSE2NEON_AES_H0);
 | |
| #undef SSE2NEON_AES_H0
 | |
| 
 | |
| /* x_time function and matrix multiply function */
 | |
| #if !defined(__aarch64__) && !defined(_M_ARM64)
 | |
| #define SSE2NEON_XT(x) (((x) << 1) ^ ((((x) >> 7) & 1) * 0x1b))
 | |
| #define SSE2NEON_MULTIPLY(x, y)                                  \
 | |
|     (((y & 1) * x) ^ ((y >> 1 & 1) * SSE2NEON_XT(x)) ^           \
 | |
|      ((y >> 2 & 1) * SSE2NEON_XT(SSE2NEON_XT(x))) ^              \
 | |
|      ((y >> 3 & 1) * SSE2NEON_XT(SSE2NEON_XT(SSE2NEON_XT(x)))) ^ \
 | |
|      ((y >> 4 & 1) * SSE2NEON_XT(SSE2NEON_XT(SSE2NEON_XT(SSE2NEON_XT(x))))))
 | |
| #endif
 | |
| 
 | |
| // In the absence of crypto extensions, implement aesenc using regular NEON
 | |
| // intrinsics instead. See:
 | |
| // https://www.workofard.com/2017/01/accelerated-aes-for-the-arm64-linux-kernel/
 | |
| // https://www.workofard.com/2017/07/ghash-for-low-end-cores/ and
 | |
| // for more information.
 | |
| FORCE_INLINE __m128i _mm_aesenc_si128(__m128i a, __m128i RoundKey)
 | |
| {
 | |
| #if defined(__aarch64__) || defined(_M_ARM64)
 | |
|     static const uint8_t shift_rows[] = {
 | |
|         0x0, 0x5, 0xa, 0xf, 0x4, 0x9, 0xe, 0x3,
 | |
|         0x8, 0xd, 0x2, 0x7, 0xc, 0x1, 0x6, 0xb,
 | |
|     };
 | |
|     static const uint8_t ror32by8[] = {
 | |
|         0x1, 0x2, 0x3, 0x0, 0x5, 0x6, 0x7, 0x4,
 | |
|         0x9, 0xa, 0xb, 0x8, 0xd, 0xe, 0xf, 0xc,
 | |
|     };
 | |
| 
 | |
|     uint8x16_t v;
 | |
|     uint8x16_t w = vreinterpretq_u8_m128i(a);
 | |
| 
 | |
|     /* shift rows */
 | |
|     w = vqtbl1q_u8(w, vld1q_u8(shift_rows));
 | |
| 
 | |
|     /* sub bytes */
 | |
|     // Here, we separate the whole 256-bytes table into 4 64-bytes tables, and
 | |
|     // look up each of the table. After each lookup, we load the next table
 | |
|     // which locates at the next 64-bytes. In the meantime, the index in the
 | |
|     // table would be smaller than it was, so the index parameters of
 | |
|     // `vqtbx4q_u8()` need to be added the same constant as the loaded tables.
 | |
|     v = vqtbl4q_u8(_sse2neon_vld1q_u8_x4(_sse2neon_sbox), w);
 | |
|     // 'w-0x40' equals to 'vsubq_u8(w, vdupq_n_u8(0x40))'
 | |
|     v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_sbox + 0x40), w - 0x40);
 | |
|     v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_sbox + 0x80), w - 0x80);
 | |
|     v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_sbox + 0xc0), w - 0xc0);
 | |
| 
 | |
|     /* mix columns */
 | |
|     w = (v << 1) ^ (uint8x16_t) (((int8x16_t) v >> 7) & 0x1b);
 | |
|     w ^= (uint8x16_t) vrev32q_u16((uint16x8_t) v);
 | |
|     w ^= vqtbl1q_u8(v ^ w, vld1q_u8(ror32by8));
 | |
| 
 | |
|     /* add round key */
 | |
|     return vreinterpretq_m128i_u8(w) ^ RoundKey;
 | |
| 
 | |
| #else /* ARMv7-A implementation for a table-based AES */
 | |
| #define SSE2NEON_AES_B2W(b0, b1, b2, b3)                 \
 | |
|     (((uint32_t) (b3) << 24) | ((uint32_t) (b2) << 16) | \
 | |
|      ((uint32_t) (b1) << 8) | (uint32_t) (b0))
 | |
| // muliplying 'x' by 2 in GF(2^8)
 | |
| #define SSE2NEON_AES_F2(x) ((x << 1) ^ (((x >> 7) & 1) * 0x011b /* WPOLY */))
 | |
| // muliplying 'x' by 3 in GF(2^8)
 | |
| #define SSE2NEON_AES_F3(x) (SSE2NEON_AES_F2(x) ^ x)
 | |
| #define SSE2NEON_AES_U0(p) \
 | |
|     SSE2NEON_AES_B2W(SSE2NEON_AES_F2(p), p, p, SSE2NEON_AES_F3(p))
 | |
| #define SSE2NEON_AES_U1(p) \
 | |
|     SSE2NEON_AES_B2W(SSE2NEON_AES_F3(p), SSE2NEON_AES_F2(p), p, p)
 | |
| #define SSE2NEON_AES_U2(p) \
 | |
|     SSE2NEON_AES_B2W(p, SSE2NEON_AES_F3(p), SSE2NEON_AES_F2(p), p)
 | |
| #define SSE2NEON_AES_U3(p) \
 | |
|     SSE2NEON_AES_B2W(p, p, SSE2NEON_AES_F3(p), SSE2NEON_AES_F2(p))
 | |
| 
 | |
|     // this generates a table containing every possible permutation of
 | |
|     // shift_rows() and sub_bytes() with mix_columns().
 | |
|     static const uint32_t ALIGN_STRUCT(16) aes_table[4][256] = {
 | |
|         SSE2NEON_AES_SBOX(SSE2NEON_AES_U0),
 | |
|         SSE2NEON_AES_SBOX(SSE2NEON_AES_U1),
 | |
|         SSE2NEON_AES_SBOX(SSE2NEON_AES_U2),
 | |
|         SSE2NEON_AES_SBOX(SSE2NEON_AES_U3),
 | |
|     };
 | |
| #undef SSE2NEON_AES_B2W
 | |
| #undef SSE2NEON_AES_F2
 | |
| #undef SSE2NEON_AES_F3
 | |
| #undef SSE2NEON_AES_U0
 | |
| #undef SSE2NEON_AES_U1
 | |
| #undef SSE2NEON_AES_U2
 | |
| #undef SSE2NEON_AES_U3
 | |
| 
 | |
|     uint32_t x0 = _mm_cvtsi128_si32(a);  // get a[31:0]
 | |
|     uint32_t x1 =
 | |
|         _mm_cvtsi128_si32(_mm_shuffle_epi32(a, 0x55));  // get a[63:32]
 | |
|     uint32_t x2 =
 | |
|         _mm_cvtsi128_si32(_mm_shuffle_epi32(a, 0xAA));  // get a[95:64]
 | |
|     uint32_t x3 =
 | |
|         _mm_cvtsi128_si32(_mm_shuffle_epi32(a, 0xFF));  // get a[127:96]
 | |
| 
 | |
|     // finish the modulo addition step in mix_columns()
 | |
|     __m128i out = _mm_set_epi32(
 | |
|         (aes_table[0][x3 & 0xff] ^ aes_table[1][(x0 >> 8) & 0xff] ^
 | |
|          aes_table[2][(x1 >> 16) & 0xff] ^ aes_table[3][x2 >> 24]),
 | |
|         (aes_table[0][x2 & 0xff] ^ aes_table[1][(x3 >> 8) & 0xff] ^
 | |
|          aes_table[2][(x0 >> 16) & 0xff] ^ aes_table[3][x1 >> 24]),
 | |
|         (aes_table[0][x1 & 0xff] ^ aes_table[1][(x2 >> 8) & 0xff] ^
 | |
|          aes_table[2][(x3 >> 16) & 0xff] ^ aes_table[3][x0 >> 24]),
 | |
|         (aes_table[0][x0 & 0xff] ^ aes_table[1][(x1 >> 8) & 0xff] ^
 | |
|          aes_table[2][(x2 >> 16) & 0xff] ^ aes_table[3][x3 >> 24]));
 | |
| 
 | |
|     return _mm_xor_si128(out, RoundKey);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // Perform one round of an AES decryption flow on data (state) in a using the
 | |
| // round key in RoundKey, and store the result in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_aesdec_si128
 | |
| FORCE_INLINE __m128i _mm_aesdec_si128(__m128i a, __m128i RoundKey)
 | |
| {
 | |
| #if defined(__aarch64__)
 | |
|     static const uint8_t inv_shift_rows[] = {
 | |
|         0x0, 0xd, 0xa, 0x7, 0x4, 0x1, 0xe, 0xb,
 | |
|         0x8, 0x5, 0x2, 0xf, 0xc, 0x9, 0x6, 0x3,
 | |
|     };
 | |
|     static const uint8_t ror32by8[] = {
 | |
|         0x1, 0x2, 0x3, 0x0, 0x5, 0x6, 0x7, 0x4,
 | |
|         0x9, 0xa, 0xb, 0x8, 0xd, 0xe, 0xf, 0xc,
 | |
|     };
 | |
| 
 | |
|     uint8x16_t v;
 | |
|     uint8x16_t w = vreinterpretq_u8_m128i(a);
 | |
| 
 | |
|     // inverse shift rows
 | |
|     w = vqtbl1q_u8(w, vld1q_u8(inv_shift_rows));
 | |
| 
 | |
|     // inverse sub bytes
 | |
|     v = vqtbl4q_u8(_sse2neon_vld1q_u8_x4(_sse2neon_rsbox), w);
 | |
|     v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_rsbox + 0x40), w - 0x40);
 | |
|     v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_rsbox + 0x80), w - 0x80);
 | |
|     v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_rsbox + 0xc0), w - 0xc0);
 | |
| 
 | |
|     // inverse mix columns
 | |
|     // multiplying 'v' by 4 in GF(2^8)
 | |
|     w = (v << 1) ^ (uint8x16_t) (((int8x16_t) v >> 7) & 0x1b);
 | |
|     w = (w << 1) ^ (uint8x16_t) (((int8x16_t) w >> 7) & 0x1b);
 | |
|     v ^= w;
 | |
|     v ^= (uint8x16_t) vrev32q_u16((uint16x8_t) w);
 | |
| 
 | |
|     w = (v << 1) ^ (uint8x16_t) (((int8x16_t) v >> 7) &
 | |
|                                  0x1b);  // muliplying 'v' by 2 in GF(2^8)
 | |
|     w ^= (uint8x16_t) vrev32q_u16((uint16x8_t) v);
 | |
|     w ^= vqtbl1q_u8(v ^ w, vld1q_u8(ror32by8));
 | |
| 
 | |
|     // add round key
 | |
|     return vreinterpretq_m128i_u8(w) ^ RoundKey;
 | |
| 
 | |
| #else /* ARMv7-A NEON implementation */
 | |
|     /* FIXME: optimized for NEON */
 | |
|     uint8_t i, e, f, g, h, v[4][4];
 | |
|     uint8_t *_a = (uint8_t *) &a;
 | |
|     for (i = 0; i < 16; ++i) {
 | |
|         v[((i / 4) + (i % 4)) % 4][i % 4] = _sse2neon_rsbox[_a[i]];
 | |
|     }
 | |
| 
 | |
|     // inverse mix columns
 | |
|     for (i = 0; i < 4; ++i) {
 | |
|         e = v[i][0];
 | |
|         f = v[i][1];
 | |
|         g = v[i][2];
 | |
|         h = v[i][3];
 | |
| 
 | |
|         v[i][0] = SSE2NEON_MULTIPLY(e, 0x0e) ^ SSE2NEON_MULTIPLY(f, 0x0b) ^
 | |
|                   SSE2NEON_MULTIPLY(g, 0x0d) ^ SSE2NEON_MULTIPLY(h, 0x09);
 | |
|         v[i][1] = SSE2NEON_MULTIPLY(e, 0x09) ^ SSE2NEON_MULTIPLY(f, 0x0e) ^
 | |
|                   SSE2NEON_MULTIPLY(g, 0x0b) ^ SSE2NEON_MULTIPLY(h, 0x0d);
 | |
|         v[i][2] = SSE2NEON_MULTIPLY(e, 0x0d) ^ SSE2NEON_MULTIPLY(f, 0x09) ^
 | |
|                   SSE2NEON_MULTIPLY(g, 0x0e) ^ SSE2NEON_MULTIPLY(h, 0x0b);
 | |
|         v[i][3] = SSE2NEON_MULTIPLY(e, 0x0b) ^ SSE2NEON_MULTIPLY(f, 0x0d) ^
 | |
|                   SSE2NEON_MULTIPLY(g, 0x09) ^ SSE2NEON_MULTIPLY(h, 0x0e);
 | |
|     }
 | |
| 
 | |
|     return vreinterpretq_m128i_u8(vld1q_u8((uint8_t *) v)) ^ RoundKey;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // Perform the last round of an AES encryption flow on data (state) in a using
 | |
| // the round key in RoundKey, and store the result in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_aesenclast_si128
 | |
| FORCE_INLINE __m128i _mm_aesenclast_si128(__m128i a, __m128i RoundKey)
 | |
| {
 | |
| #if defined(__aarch64__)
 | |
|     static const uint8_t shift_rows[] = {
 | |
|         0x0, 0x5, 0xa, 0xf, 0x4, 0x9, 0xe, 0x3,
 | |
|         0x8, 0xd, 0x2, 0x7, 0xc, 0x1, 0x6, 0xb,
 | |
|     };
 | |
| 
 | |
|     uint8x16_t v;
 | |
|     uint8x16_t w = vreinterpretq_u8_m128i(a);
 | |
| 
 | |
|     // shift rows
 | |
|     w = vqtbl1q_u8(w, vld1q_u8(shift_rows));
 | |
| 
 | |
|     // sub bytes
 | |
|     v = vqtbl4q_u8(_sse2neon_vld1q_u8_x4(_sse2neon_sbox), w);
 | |
|     v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_sbox + 0x40), w - 0x40);
 | |
|     v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_sbox + 0x80), w - 0x80);
 | |
|     v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_sbox + 0xc0), w - 0xc0);
 | |
| 
 | |
|     // add round key
 | |
|     return vreinterpretq_m128i_u8(v) ^ RoundKey;
 | |
| 
 | |
| #else /* ARMv7-A implementation */
 | |
|     uint8_t v[16] = {
 | |
|         _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 0)],
 | |
|         _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 5)],
 | |
|         _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 10)],
 | |
|         _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 15)],
 | |
|         _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 4)],
 | |
|         _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 9)],
 | |
|         _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 14)],
 | |
|         _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 3)],
 | |
|         _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 8)],
 | |
|         _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 13)],
 | |
|         _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 2)],
 | |
|         _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 7)],
 | |
|         _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 12)],
 | |
|         _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 1)],
 | |
|         _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 6)],
 | |
|         _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 11)],
 | |
|     };
 | |
| 
 | |
|     return vreinterpretq_m128i_u8(vld1q_u8(v)) ^ RoundKey;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // Perform the last round of an AES decryption flow on data (state) in a using
 | |
| // the round key in RoundKey, and store the result in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_aesdeclast_si128
 | |
| FORCE_INLINE __m128i _mm_aesdeclast_si128(__m128i a, __m128i RoundKey)
 | |
| {
 | |
| #if defined(__aarch64__)
 | |
|     static const uint8_t inv_shift_rows[] = {
 | |
|         0x0, 0xd, 0xa, 0x7, 0x4, 0x1, 0xe, 0xb,
 | |
|         0x8, 0x5, 0x2, 0xf, 0xc, 0x9, 0x6, 0x3,
 | |
|     };
 | |
| 
 | |
|     uint8x16_t v;
 | |
|     uint8x16_t w = vreinterpretq_u8_m128i(a);
 | |
| 
 | |
|     // inverse shift rows
 | |
|     w = vqtbl1q_u8(w, vld1q_u8(inv_shift_rows));
 | |
| 
 | |
|     // inverse sub bytes
 | |
|     v = vqtbl4q_u8(_sse2neon_vld1q_u8_x4(_sse2neon_rsbox), w);
 | |
|     v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_rsbox + 0x40), w - 0x40);
 | |
|     v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_rsbox + 0x80), w - 0x80);
 | |
|     v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_rsbox + 0xc0), w - 0xc0);
 | |
| 
 | |
|     // add round key
 | |
|     return vreinterpretq_m128i_u8(v) ^ RoundKey;
 | |
| 
 | |
| #else /* ARMv7-A NEON implementation */
 | |
|     /* FIXME: optimized for NEON */
 | |
|     uint8_t v[4][4];
 | |
|     uint8_t *_a = (uint8_t *) &a;
 | |
|     for (int i = 0; i < 16; ++i) {
 | |
|         v[((i / 4) + (i % 4)) % 4][i % 4] = _sse2neon_rsbox[_a[i]];
 | |
|     }
 | |
| 
 | |
|     return vreinterpretq_m128i_u8(vld1q_u8((uint8_t *) v)) ^ RoundKey;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // Perform the InvMixColumns transformation on a and store the result in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_aesimc_si128
 | |
| FORCE_INLINE __m128i _mm_aesimc_si128(__m128i a)
 | |
| {
 | |
| #if defined(__aarch64__)
 | |
|     static const uint8_t ror32by8[] = {
 | |
|         0x1, 0x2, 0x3, 0x0, 0x5, 0x6, 0x7, 0x4,
 | |
|         0x9, 0xa, 0xb, 0x8, 0xd, 0xe, 0xf, 0xc,
 | |
|     };
 | |
|     uint8x16_t v = vreinterpretq_u8_m128i(a);
 | |
|     uint8x16_t w;
 | |
| 
 | |
|     // multiplying 'v' by 4 in GF(2^8)
 | |
|     w = (v << 1) ^ (uint8x16_t) (((int8x16_t) v >> 7) & 0x1b);
 | |
|     w = (w << 1) ^ (uint8x16_t) (((int8x16_t) w >> 7) & 0x1b);
 | |
|     v ^= w;
 | |
|     v ^= (uint8x16_t) vrev32q_u16((uint16x8_t) w);
 | |
| 
 | |
|     // multiplying 'v' by 2 in GF(2^8)
 | |
|     w = (v << 1) ^ (uint8x16_t) (((int8x16_t) v >> 7) & 0x1b);
 | |
|     w ^= (uint8x16_t) vrev32q_u16((uint16x8_t) v);
 | |
|     w ^= vqtbl1q_u8(v ^ w, vld1q_u8(ror32by8));
 | |
|     return vreinterpretq_m128i_u8(w);
 | |
| 
 | |
| #else /* ARMv7-A NEON implementation */
 | |
|     uint8_t i, e, f, g, h, v[4][4];
 | |
|     vst1q_u8((uint8_t *) v, vreinterpretq_u8_m128i(a));
 | |
|     for (i = 0; i < 4; ++i) {
 | |
|         e = v[i][0];
 | |
|         f = v[i][1];
 | |
|         g = v[i][2];
 | |
|         h = v[i][3];
 | |
| 
 | |
|         v[i][0] = SSE2NEON_MULTIPLY(e, 0x0e) ^ SSE2NEON_MULTIPLY(f, 0x0b) ^
 | |
|                   SSE2NEON_MULTIPLY(g, 0x0d) ^ SSE2NEON_MULTIPLY(h, 0x09);
 | |
|         v[i][1] = SSE2NEON_MULTIPLY(e, 0x09) ^ SSE2NEON_MULTIPLY(f, 0x0e) ^
 | |
|                   SSE2NEON_MULTIPLY(g, 0x0b) ^ SSE2NEON_MULTIPLY(h, 0x0d);
 | |
|         v[i][2] = SSE2NEON_MULTIPLY(e, 0x0d) ^ SSE2NEON_MULTIPLY(f, 0x09) ^
 | |
|                   SSE2NEON_MULTIPLY(g, 0x0e) ^ SSE2NEON_MULTIPLY(h, 0x0b);
 | |
|         v[i][3] = SSE2NEON_MULTIPLY(e, 0x0b) ^ SSE2NEON_MULTIPLY(f, 0x0d) ^
 | |
|                   SSE2NEON_MULTIPLY(g, 0x09) ^ SSE2NEON_MULTIPLY(h, 0x0e);
 | |
|     }
 | |
| 
 | |
|     return vreinterpretq_m128i_u8(vld1q_u8((uint8_t *) v));
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // Assist in expanding the AES cipher key by computing steps towards generating
 | |
| // a round key for encryption cipher using data from a and an 8-bit round
 | |
| // constant specified in imm8, and store the result in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_aeskeygenassist_si128
 | |
| //
 | |
| // Emits the Advanced Encryption Standard (AES) instruction aeskeygenassist.
 | |
| // This instruction generates a round key for AES encryption. See
 | |
| // https://kazakov.life/2017/11/01/cryptocurrency-mining-on-ios-devices/
 | |
| // for details.
 | |
| FORCE_INLINE __m128i _mm_aeskeygenassist_si128(__m128i a, const int rcon)
 | |
| {
 | |
| #if defined(__aarch64__)
 | |
|     uint8x16_t _a = vreinterpretq_u8_m128i(a);
 | |
|     uint8x16_t v = vqtbl4q_u8(_sse2neon_vld1q_u8_x4(_sse2neon_sbox), _a);
 | |
|     v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_sbox + 0x40), _a - 0x40);
 | |
|     v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_sbox + 0x80), _a - 0x80);
 | |
|     v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_sbox + 0xc0), _a - 0xc0);
 | |
| 
 | |
|     uint32x4_t v_u32 = vreinterpretq_u32_u8(v);
 | |
|     uint32x4_t ror_v = vorrq_u32(vshrq_n_u32(v_u32, 8), vshlq_n_u32(v_u32, 24));
 | |
|     uint32x4_t ror_xor_v = veorq_u32(ror_v, vdupq_n_u32(rcon));
 | |
| 
 | |
|     return vreinterpretq_m128i_u32(vtrn2q_u32(v_u32, ror_xor_v));
 | |
| 
 | |
| #else /* ARMv7-A NEON implementation */
 | |
|     uint32_t X1 = _mm_cvtsi128_si32(_mm_shuffle_epi32(a, 0x55));
 | |
|     uint32_t X3 = _mm_cvtsi128_si32(_mm_shuffle_epi32(a, 0xFF));
 | |
|     for (int i = 0; i < 4; ++i) {
 | |
|         ((uint8_t *) &X1)[i] = _sse2neon_sbox[((uint8_t *) &X1)[i]];
 | |
|         ((uint8_t *) &X3)[i] = _sse2neon_sbox[((uint8_t *) &X3)[i]];
 | |
|     }
 | |
|     return _mm_set_epi32(((X3 >> 8) | (X3 << 24)) ^ rcon, X3,
 | |
|                          ((X1 >> 8) | (X1 << 24)) ^ rcon, X1);
 | |
| #endif
 | |
| }
 | |
| #undef SSE2NEON_AES_SBOX
 | |
| #undef SSE2NEON_AES_RSBOX
 | |
| 
 | |
| #if defined(__aarch64__)
 | |
| #undef SSE2NEON_XT
 | |
| #undef SSE2NEON_MULTIPLY
 | |
| #endif
 | |
| 
 | |
| #else /* __ARM_FEATURE_CRYPTO */
 | |
| // Implements equivalent of 'aesenc' by combining AESE (with an empty key) and
 | |
| // AESMC and then manually applying the real key as an xor operation. This
 | |
| // unfortunately means an additional xor op; the compiler should be able to
 | |
| // optimize this away for repeated calls however. See
 | |
| // https://blog.michaelbrase.com/2018/05/08/emulating-x86-aes-intrinsics-on-armv8-a
 | |
| // for more details.
 | |
| FORCE_INLINE __m128i _mm_aesenc_si128(__m128i a, __m128i b)
 | |
| {
 | |
|     return vreinterpretq_m128i_u8(veorq_u8(
 | |
|         vaesmcq_u8(vaeseq_u8(vreinterpretq_u8_m128i(a), vdupq_n_u8(0))),
 | |
|         vreinterpretq_u8_m128i(b)));
 | |
| }
 | |
| 
 | |
| // Perform one round of an AES decryption flow on data (state) in a using the
 | |
| // round key in RoundKey, and store the result in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_aesdec_si128
 | |
| FORCE_INLINE __m128i _mm_aesdec_si128(__m128i a, __m128i RoundKey)
 | |
| {
 | |
|     return vreinterpretq_m128i_u8(veorq_u8(
 | |
|         vaesimcq_u8(vaesdq_u8(vreinterpretq_u8_m128i(a), vdupq_n_u8(0))),
 | |
|         vreinterpretq_u8_m128i(RoundKey)));
 | |
| }
 | |
| 
 | |
| // Perform the last round of an AES encryption flow on data (state) in a using
 | |
| // the round key in RoundKey, and store the result in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_aesenclast_si128
 | |
| FORCE_INLINE __m128i _mm_aesenclast_si128(__m128i a, __m128i RoundKey)
 | |
| {
 | |
|     return _mm_xor_si128(vreinterpretq_m128i_u8(vaeseq_u8(
 | |
|                              vreinterpretq_u8_m128i(a), vdupq_n_u8(0))),
 | |
|                          RoundKey);
 | |
| }
 | |
| 
 | |
| // Perform the last round of an AES decryption flow on data (state) in a using
 | |
| // the round key in RoundKey, and store the result in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_aesdeclast_si128
 | |
| FORCE_INLINE __m128i _mm_aesdeclast_si128(__m128i a, __m128i RoundKey)
 | |
| {
 | |
|     return vreinterpretq_m128i_u8(
 | |
|         veorq_u8(vaesdq_u8(vreinterpretq_u8_m128i(a), vdupq_n_u8(0)),
 | |
|                  vreinterpretq_u8_m128i(RoundKey)));
 | |
| }
 | |
| 
 | |
| // Perform the InvMixColumns transformation on a and store the result in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_aesimc_si128
 | |
| FORCE_INLINE __m128i _mm_aesimc_si128(__m128i a)
 | |
| {
 | |
|     return vreinterpretq_m128i_u8(vaesimcq_u8(vreinterpretq_u8_m128i(a)));
 | |
| }
 | |
| 
 | |
| // Assist in expanding the AES cipher key by computing steps towards generating
 | |
| // a round key for encryption cipher using data from a and an 8-bit round
 | |
| // constant specified in imm8, and store the result in dst."
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_aeskeygenassist_si128
 | |
| FORCE_INLINE __m128i _mm_aeskeygenassist_si128(__m128i a, const int rcon)
 | |
| {
 | |
|     // AESE does ShiftRows and SubBytes on A
 | |
|     uint8x16_t u8 = vaeseq_u8(vreinterpretq_u8_m128i(a), vdupq_n_u8(0));
 | |
| 
 | |
| #ifndef _MSC_VER
 | |
|     uint8x16_t dest = {
 | |
|         // Undo ShiftRows step from AESE and extract X1 and X3
 | |
|         u8[0x4], u8[0x1], u8[0xE], u8[0xB],  // SubBytes(X1)
 | |
|         u8[0x1], u8[0xE], u8[0xB], u8[0x4],  // ROT(SubBytes(X1))
 | |
|         u8[0xC], u8[0x9], u8[0x6], u8[0x3],  // SubBytes(X3)
 | |
|         u8[0x9], u8[0x6], u8[0x3], u8[0xC],  // ROT(SubBytes(X3))
 | |
|     };
 | |
|     uint32x4_t r = {0, (unsigned) rcon, 0, (unsigned) rcon};
 | |
|     return vreinterpretq_m128i_u8(dest) ^ vreinterpretq_m128i_u32(r);
 | |
| #else
 | |
|     // We have to do this hack because MSVC is strictly adhering to the CPP
 | |
|     // standard, in particular C++03 8.5.1 sub-section 15, which states that
 | |
|     // unions must be initialized by their first member type.
 | |
| 
 | |
|     // As per the Windows ARM64 ABI, it is always little endian, so this works
 | |
|     __n128 dest{
 | |
|         ((uint64_t) u8.n128_u8[0x4] << 0) | ((uint64_t) u8.n128_u8[0x1] << 8) |
 | |
|             ((uint64_t) u8.n128_u8[0xE] << 16) |
 | |
|             ((uint64_t) u8.n128_u8[0xB] << 24) |
 | |
|             ((uint64_t) u8.n128_u8[0x1] << 32) |
 | |
|             ((uint64_t) u8.n128_u8[0xE] << 40) |
 | |
|             ((uint64_t) u8.n128_u8[0xB] << 48) |
 | |
|             ((uint64_t) u8.n128_u8[0x4] << 56),
 | |
|         ((uint64_t) u8.n128_u8[0xC] << 0) | ((uint64_t) u8.n128_u8[0x9] << 8) |
 | |
|             ((uint64_t) u8.n128_u8[0x6] << 16) |
 | |
|             ((uint64_t) u8.n128_u8[0x3] << 24) |
 | |
|             ((uint64_t) u8.n128_u8[0x9] << 32) |
 | |
|             ((uint64_t) u8.n128_u8[0x6] << 40) |
 | |
|             ((uint64_t) u8.n128_u8[0x3] << 48) |
 | |
|             ((uint64_t) u8.n128_u8[0xC] << 56)};
 | |
| 
 | |
|     dest.n128_u32[1] = dest.n128_u32[1] ^ rcon;
 | |
|     dest.n128_u32[3] = dest.n128_u32[3] ^ rcon;
 | |
| 
 | |
|     return dest;
 | |
| #endif
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* Others */
 | |
| 
 | |
| // Perform a carry-less multiplication of two 64-bit integers, selected from a
 | |
| // and b according to imm8, and store the results in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_clmulepi64_si128
 | |
| FORCE_INLINE __m128i _mm_clmulepi64_si128(__m128i _a, __m128i _b, const int imm)
 | |
| {
 | |
|     uint64x2_t a = vreinterpretq_u64_m128i(_a);
 | |
|     uint64x2_t b = vreinterpretq_u64_m128i(_b);
 | |
|     switch (imm & 0x11) {
 | |
|     case 0x00:
 | |
|         return vreinterpretq_m128i_u64(
 | |
|             _sse2neon_vmull_p64(vget_low_u64(a), vget_low_u64(b)));
 | |
|     case 0x01:
 | |
|         return vreinterpretq_m128i_u64(
 | |
|             _sse2neon_vmull_p64(vget_high_u64(a), vget_low_u64(b)));
 | |
|     case 0x10:
 | |
|         return vreinterpretq_m128i_u64(
 | |
|             _sse2neon_vmull_p64(vget_low_u64(a), vget_high_u64(b)));
 | |
|     case 0x11:
 | |
|         return vreinterpretq_m128i_u64(
 | |
|             _sse2neon_vmull_p64(vget_high_u64(a), vget_high_u64(b)));
 | |
|     default:
 | |
|         abort();
 | |
|     }
 | |
| }
 | |
| 
 | |
| FORCE_INLINE unsigned int _sse2neon_mm_get_denormals_zero_mode(void)
 | |
| {
 | |
|     union {
 | |
|         fpcr_bitfield field;
 | |
| #if defined(__aarch64__) || defined(_M_ARM64)
 | |
|         uint64_t value;
 | |
| #else
 | |
|         uint32_t value;
 | |
| #endif
 | |
|     } r;
 | |
| 
 | |
| #if defined(__aarch64__) || defined(_M_ARM64)
 | |
|     r.value = _sse2neon_get_fpcr();
 | |
| #else
 | |
|     __asm__ __volatile__("vmrs %0, FPSCR" : "=r"(r.value)); /* read */
 | |
| #endif
 | |
| 
 | |
|     return r.field.bit24 ? _MM_DENORMALS_ZERO_ON : _MM_DENORMALS_ZERO_OFF;
 | |
| }
 | |
| 
 | |
| // Count the number of bits set to 1 in unsigned 32-bit integer a, and
 | |
| // return that count in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_popcnt_u32
 | |
| FORCE_INLINE int _mm_popcnt_u32(unsigned int a)
 | |
| {
 | |
| #if defined(__aarch64__) || defined(_M_ARM64)
 | |
| #if __has_builtin(__builtin_popcount)
 | |
|     return __builtin_popcount(a);
 | |
| #elif defined(_MSC_VER)
 | |
|     return _CountOneBits(a);
 | |
| #else
 | |
|     return (int) vaddlv_u8(vcnt_u8(vcreate_u8((uint64_t) a)));
 | |
| #endif
 | |
| #else
 | |
|     uint32_t count = 0;
 | |
|     uint8x8_t input_val, count8x8_val;
 | |
|     uint16x4_t count16x4_val;
 | |
|     uint32x2_t count32x2_val;
 | |
| 
 | |
|     input_val = vld1_u8((uint8_t *) &a);
 | |
|     count8x8_val = vcnt_u8(input_val);
 | |
|     count16x4_val = vpaddl_u8(count8x8_val);
 | |
|     count32x2_val = vpaddl_u16(count16x4_val);
 | |
| 
 | |
|     vst1_u32(&count, count32x2_val);
 | |
|     return count;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // Count the number of bits set to 1 in unsigned 64-bit integer a, and
 | |
| // return that count in dst.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_popcnt_u64
 | |
| FORCE_INLINE int64_t _mm_popcnt_u64(uint64_t a)
 | |
| {
 | |
| #if defined(__aarch64__) || defined(_M_ARM64)
 | |
| #if __has_builtin(__builtin_popcountll)
 | |
|     return __builtin_popcountll(a);
 | |
| #elif defined(_MSC_VER)
 | |
|     return _CountOneBits64(a);
 | |
| #else
 | |
|     return (int64_t) vaddlv_u8(vcnt_u8(vcreate_u8(a)));
 | |
| #endif
 | |
| #else
 | |
|     uint64_t count = 0;
 | |
|     uint8x8_t input_val, count8x8_val;
 | |
|     uint16x4_t count16x4_val;
 | |
|     uint32x2_t count32x2_val;
 | |
|     uint64x1_t count64x1_val;
 | |
| 
 | |
|     input_val = vld1_u8((uint8_t *) &a);
 | |
|     count8x8_val = vcnt_u8(input_val);
 | |
|     count16x4_val = vpaddl_u8(count8x8_val);
 | |
|     count32x2_val = vpaddl_u16(count16x4_val);
 | |
|     count64x1_val = vpaddl_u32(count32x2_val);
 | |
|     vst1_u64(&count, count64x1_val);
 | |
|     return count;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| FORCE_INLINE void _sse2neon_mm_set_denormals_zero_mode(unsigned int flag)
 | |
| {
 | |
|     // AArch32 Advanced SIMD arithmetic always uses the Flush-to-zero setting,
 | |
|     // regardless of the value of the FZ bit.
 | |
|     union {
 | |
|         fpcr_bitfield field;
 | |
| #if defined(__aarch64__) || defined(_M_ARM64)
 | |
|         uint64_t value;
 | |
| #else
 | |
|         uint32_t value;
 | |
| #endif
 | |
|     } r;
 | |
| 
 | |
| #if defined(__aarch64__) || defined(_M_ARM64)
 | |
|     r.value = _sse2neon_get_fpcr();
 | |
| #else
 | |
|     __asm__ __volatile__("vmrs %0, FPSCR" : "=r"(r.value)); /* read */
 | |
| #endif
 | |
| 
 | |
|     r.field.bit24 = (flag & _MM_DENORMALS_ZERO_MASK) == _MM_DENORMALS_ZERO_ON;
 | |
| 
 | |
| #if defined(__aarch64__) || defined(_M_ARM64)
 | |
|     _sse2neon_set_fpcr(r.value);
 | |
| #else
 | |
|     __asm__ __volatile__("vmsr FPSCR, %0" ::"r"(r));        /* write */
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // Return the current 64-bit value of the processor's time-stamp counter.
 | |
| // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=rdtsc
 | |
| FORCE_INLINE uint64_t _rdtsc(void)
 | |
| {
 | |
| #if defined(__aarch64__) || defined(_M_ARM64)
 | |
|     uint64_t val;
 | |
| 
 | |
|     /* According to ARM DDI 0487F.c, from Armv8.0 to Armv8.5 inclusive, the
 | |
|      * system counter is at least 56 bits wide; from Armv8.6, the counter
 | |
|      * must be 64 bits wide.  So the system counter could be less than 64
 | |
|      * bits wide and it is attributed with the flag 'cap_user_time_short'
 | |
|      * is true.
 | |
|      */
 | |
| #if defined(_MSC_VER)
 | |
|     val = _ReadStatusReg(ARM64_SYSREG(3, 3, 14, 0, 2));
 | |
| #else
 | |
|     __asm__ __volatile__("mrs %0, cntvct_el0" : "=r"(val));
 | |
| #endif
 | |
| 
 | |
|     return val;
 | |
| #else
 | |
|     uint32_t pmccntr, pmuseren, pmcntenset;
 | |
|     // Read the user mode Performance Monitoring Unit (PMU)
 | |
|     // User Enable Register (PMUSERENR) access permissions.
 | |
|     __asm__ __volatile__("mrc p15, 0, %0, c9, c14, 0" : "=r"(pmuseren));
 | |
|     if (pmuseren & 1) {  // Allows reading PMUSERENR for user mode code.
 | |
|         __asm__ __volatile__("mrc p15, 0, %0, c9, c12, 1" : "=r"(pmcntenset));
 | |
|         if (pmcntenset & 0x80000000UL) {  // Is it counting?
 | |
|             __asm__ __volatile__("mrc p15, 0, %0, c9, c13, 0" : "=r"(pmccntr));
 | |
|             // The counter is set up to count every 64th cycle
 | |
|             return (uint64_t) (pmccntr) << 6;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // Fallback to syscall as we can't enable PMUSERENR in user mode.
 | |
|     struct timeval tv;
 | |
|     gettimeofday(&tv, NULL);
 | |
|     return (uint64_t) (tv.tv_sec) * 1000000 + tv.tv_usec;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| #if defined(__GNUC__) || defined(__clang__)
 | |
| #pragma pop_macro("ALIGN_STRUCT")
 | |
| #pragma pop_macro("FORCE_INLINE")
 | |
| #endif
 | |
| 
 | |
| #if defined(__GNUC__) && !defined(__clang__)
 | |
| #pragma GCC pop_options
 | |
| #endif
 | |
| 
 | |
| #endif
 | 
