mirror of
				https://git.eden-emu.dev/eden-emu/eden.git
				synced 2025-10-26 12:33:22 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			212 lines
		
	
	
	
		
			5.9 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			212 lines
		
	
	
	
		
			5.9 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /// @ref gtx_quaternion
 | |
| /// @file glm/gtx/quaternion.inl
 | |
| 
 | |
| #include <limits>
 | |
| #include "../gtc/constants.hpp"
 | |
| 
 | |
| namespace glm
 | |
| {
 | |
| 	template <typename T, precision P>
 | |
| 	GLM_FUNC_QUALIFIER tvec3<T, P> cross(tvec3<T, P> const& v, tquat<T, P> const& q)
 | |
| 	{
 | |
| 		return inverse(q) * v;
 | |
| 	}
 | |
| 
 | |
| 	template <typename T, precision P>
 | |
| 	GLM_FUNC_QUALIFIER tvec3<T, P> cross(tquat<T, P> const& q, tvec3<T, P> const& v)
 | |
| 	{
 | |
| 		return q * v;
 | |
| 	}
 | |
| 
 | |
| 	template <typename T, precision P>
 | |
| 	GLM_FUNC_QUALIFIER tquat<T, P> squad
 | |
| 	(
 | |
| 		tquat<T, P> const & q1,
 | |
| 		tquat<T, P> const & q2,
 | |
| 		tquat<T, P> const & s1,
 | |
| 		tquat<T, P> const & s2,
 | |
| 		T const & h)
 | |
| 	{
 | |
| 		return mix(mix(q1, q2, h), mix(s1, s2, h), static_cast<T>(2) * (static_cast<T>(1) - h) * h);
 | |
| 	}
 | |
| 
 | |
| 	template <typename T, precision P>
 | |
| 	GLM_FUNC_QUALIFIER tquat<T, P> intermediate
 | |
| 	(
 | |
| 		tquat<T, P> const & prev,
 | |
| 		tquat<T, P> const & curr,
 | |
| 		tquat<T, P> const & next
 | |
| 	)
 | |
| 	{
 | |
| 		tquat<T, P> invQuat = inverse(curr);
 | |
| 		return exp((log(next + invQuat) + log(prev + invQuat)) / static_cast<T>(-4)) * curr;
 | |
| 	}
 | |
| 
 | |
| 	template <typename T, precision P>
 | |
| 	GLM_FUNC_QUALIFIER tquat<T, P> exp(tquat<T, P> const& q)
 | |
| 	{
 | |
| 		tvec3<T, P> u(q.x, q.y, q.z);
 | |
| 		T const Angle = glm::length(u);
 | |
| 		if (Angle < epsilon<T>())
 | |
| 			return tquat<T, P>();
 | |
| 
 | |
| 		tvec3<T, P> const v(u / Angle);
 | |
| 		return tquat<T, P>(cos(Angle), sin(Angle) * v);
 | |
| 	}
 | |
| 
 | |
| 	template <typename T, precision P>
 | |
| 	GLM_FUNC_QUALIFIER tquat<T, P> log(tquat<T, P> const& q)
 | |
| 	{
 | |
| 		tvec3<T, P> u(q.x, q.y, q.z);
 | |
| 		T Vec3Len = length(u);
 | |
| 
 | |
| 		if (Vec3Len < epsilon<T>())
 | |
| 		{
 | |
| 			if(q.w > static_cast<T>(0))
 | |
| 				return tquat<T, P>(log(q.w), static_cast<T>(0), static_cast<T>(0), static_cast<T>(0));
 | |
| 			else if(q.w < static_cast<T>(0))
 | |
| 				return tquat<T, P>(log(-q.w), pi<T>(), static_cast<T>(0), static_cast<T>(0));
 | |
| 			else
 | |
| 				return tquat<T, P>(std::numeric_limits<T>::infinity(), std::numeric_limits<T>::infinity(), std::numeric_limits<T>::infinity(), std::numeric_limits<T>::infinity());
 | |
| 		}
 | |
| 		else
 | |
| 		{
 | |
| 			T t = atan(Vec3Len, T(q.w)) / Vec3Len;
 | |
| 			T QuatLen2 = Vec3Len * Vec3Len + q.w * q.w;
 | |
| 			return tquat<T, P>(static_cast<T>(0.5) * log(QuatLen2), t * q.x, t * q.y, t * q.z);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	template <typename T, precision P>
 | |
| 	GLM_FUNC_QUALIFIER tquat<T, P> pow(tquat<T, P> const & x, T const & y)
 | |
| 	{
 | |
| 		//Raising to the power of 0 should yield 1
 | |
| 		//Needed to prevent a division by 0 error later on
 | |
| 		if(y > -epsilon<T>() && y < epsilon<T>())
 | |
| 			return tquat<T, P>(1,0,0,0);
 | |
| 
 | |
| 		//To deal with non-unit quaternions
 | |
| 		T magnitude = sqrt(x.x * x.x + x.y * x.y + x.z * x.z + x.w *x.w);
 | |
| 
 | |
| 		//Equivalent to raising a real number to a power
 | |
| 		//Needed to prevent a division by 0 error later on
 | |
| 		if(abs(x.w / magnitude) > static_cast<T>(1) - epsilon<T>() && abs(x.w / magnitude) < static_cast<T>(1) + epsilon<T>())
 | |
| 			return tquat<T, P>(pow(x.w, y),0,0,0);
 | |
| 
 | |
| 		T Angle = acos(x.w / magnitude);
 | |
| 		T NewAngle = Angle * y;
 | |
| 		T Div = sin(NewAngle) / sin(Angle);
 | |
| 		T Mag = pow(magnitude, y - static_cast<T>(1));
 | |
| 
 | |
| 		return tquat<T, P>(cos(NewAngle) * magnitude * Mag, x.x * Div * Mag, x.y * Div * Mag, x.z * Div * Mag);
 | |
| 	}
 | |
| 
 | |
| 	template <typename T, precision P>
 | |
| 	GLM_FUNC_QUALIFIER tvec3<T, P> rotate(tquat<T, P> const& q, tvec3<T, P> const& v)
 | |
| 	{
 | |
| 		return q * v;
 | |
| 	}
 | |
| 
 | |
| 	template <typename T, precision P>
 | |
| 	GLM_FUNC_QUALIFIER tvec4<T, P> rotate(tquat<T, P> const& q, tvec4<T, P> const& v)
 | |
| 	{
 | |
| 		return q * v;
 | |
| 	}
 | |
| 
 | |
| 	template <typename T, precision P>
 | |
| 	GLM_FUNC_QUALIFIER T extractRealComponent(tquat<T, P> const& q)
 | |
| 	{
 | |
| 		T w = static_cast<T>(1) - q.x * q.x - q.y * q.y - q.z * q.z;
 | |
| 		if(w < T(0))
 | |
| 			return T(0);
 | |
| 		else
 | |
| 			return -sqrt(w);
 | |
| 	}
 | |
| 
 | |
| 	template <typename T, precision P>
 | |
| 	GLM_FUNC_QUALIFIER T length2(tquat<T, P> const& q)
 | |
| 	{
 | |
| 		return q.x * q.x + q.y * q.y + q.z * q.z + q.w * q.w;
 | |
| 	}
 | |
| 
 | |
| 	template <typename T, precision P>
 | |
| 	GLM_FUNC_QUALIFIER tquat<T, P> shortMix(tquat<T, P> const& x, tquat<T, P> const& y, T const& a)
 | |
| 	{
 | |
| 		if(a <= static_cast<T>(0)) return x;
 | |
| 		if(a >= static_cast<T>(1)) return y;
 | |
| 
 | |
| 		T fCos = dot(x, y);
 | |
| 		tquat<T, P> y2(y); //BUG!!! tquat<T> y2;
 | |
| 		if(fCos < static_cast<T>(0))
 | |
| 		{
 | |
| 			y2 = -y;
 | |
| 			fCos = -fCos;
 | |
| 		}
 | |
| 
 | |
| 		//if(fCos > 1.0f) // problem
 | |
| 		T k0, k1;
 | |
| 		if(fCos > (static_cast<T>(1) - epsilon<T>()))
 | |
| 		{
 | |
| 			k0 = static_cast<T>(1) - a;
 | |
| 			k1 = static_cast<T>(0) + a; //BUG!!! 1.0f + a;
 | |
| 		}
 | |
| 		else
 | |
| 		{
 | |
| 			T fSin = sqrt(T(1) - fCos * fCos);
 | |
| 			T fAngle = atan(fSin, fCos);
 | |
| 			T fOneOverSin = static_cast<T>(1) / fSin;
 | |
| 			k0 = sin((static_cast<T>(1) - a) * fAngle) * fOneOverSin;
 | |
| 			k1 = sin((static_cast<T>(0) + a) * fAngle) * fOneOverSin;
 | |
| 		}
 | |
| 
 | |
| 		return tquat<T, P>(
 | |
| 			k0 * x.w + k1 * y2.w,
 | |
| 			k0 * x.x + k1 * y2.x,
 | |
| 			k0 * x.y + k1 * y2.y,
 | |
| 			k0 * x.z + k1 * y2.z);
 | |
| 	}
 | |
| 
 | |
| 	template <typename T, precision P>
 | |
| 	GLM_FUNC_QUALIFIER tquat<T, P> fastMix(tquat<T, P> const& x, tquat<T, P> const& y, T const & a)
 | |
| 	{
 | |
| 		return glm::normalize(x * (static_cast<T>(1) - a) + (y * a));
 | |
| 	}
 | |
| 
 | |
| 	template <typename T, precision P>
 | |
| 	GLM_FUNC_QUALIFIER tquat<T, P> rotation(tvec3<T, P> const& orig, tvec3<T, P> const& dest)
 | |
| 	{
 | |
| 		T cosTheta = dot(orig, dest);
 | |
| 		tvec3<T, P> rotationAxis;
 | |
| 
 | |
| 		if(cosTheta >= static_cast<T>(1) - epsilon<T>())
 | |
| 			return quat();
 | |
| 
 | |
| 		if(cosTheta < static_cast<T>(-1) + epsilon<T>())
 | |
| 		{
 | |
| 			// special case when vectors in opposite directions :
 | |
| 			// there is no "ideal" rotation axis
 | |
| 			// So guess one; any will do as long as it's perpendicular to start
 | |
| 			// This implementation favors a rotation around the Up axis (Y),
 | |
| 			// since it's often what you want to do.
 | |
| 			rotationAxis = cross(tvec3<T, P>(0, 0, 1), orig);
 | |
| 			if(length2(rotationAxis) < epsilon<T>()) // bad luck, they were parallel, try again!
 | |
| 				rotationAxis = cross(tvec3<T, P>(1, 0, 0), orig);
 | |
| 
 | |
| 			rotationAxis = normalize(rotationAxis);
 | |
| 			return angleAxis(pi<T>(), rotationAxis);
 | |
| 		}
 | |
| 
 | |
| 		// Implementation from Stan Melax's Game Programming Gems 1 article
 | |
| 		rotationAxis = cross(orig, dest);
 | |
| 
 | |
| 		T s = sqrt((T(1) + cosTheta) * static_cast<T>(2));
 | |
| 		T invs = static_cast<T>(1) / s;
 | |
| 
 | |
| 		return tquat<T, P>(
 | |
| 			s * static_cast<T>(0.5f), 
 | |
| 			rotationAxis.x * invs,
 | |
| 			rotationAxis.y * invs,
 | |
| 			rotationAxis.z * invs);
 | |
| 	}
 | |
| 
 | |
| }//namespace glm
 |