Move solution and projects to src

This commit is contained in:
TSR Berry 2023-04-08 01:22:00 +02:00 committed by Mary
parent cd124bda58
commit cee7121058
3466 changed files with 55 additions and 55 deletions

View file

@ -0,0 +1,123 @@
using System;
using System.Diagnostics.CodeAnalysis;
using System.Runtime.CompilerServices;
using System.Runtime.InteropServices;
namespace Ryujinx.Common.Memory
{
/// <summary>
/// Represents an array of unmanaged resources.
/// </summary>
/// <typeparam name="T">Array element type</typeparam>
public unsafe struct ArrayPtr<T> : IEquatable<ArrayPtr<T>>, IArray<T> where T : unmanaged
{
private IntPtr _ptr;
/// <summary>
/// Null pointer.
/// </summary>
public static ArrayPtr<T> Null => new ArrayPtr<T>() { _ptr = IntPtr.Zero };
/// <summary>
/// True if the pointer is null, false otherwise.
/// </summary>
public bool IsNull => _ptr == IntPtr.Zero;
/// <summary>
/// Number of elements on the array.
/// </summary>
public int Length { get; }
/// <summary>
/// Gets a reference to the item at the given index.
/// </summary>
/// <remarks>
/// No bounds checks are performed, this allows negative indexing,
/// but care must be taken if the index may be out of bounds.
/// </remarks>
/// <param name="index">Index of the element</param>
/// <returns>Reference to the element at the given index</returns>
public ref T this[int index] => ref Unsafe.AsRef<T>((T*)_ptr + index);
/// <summary>
/// Creates a new array from a given reference.
/// </summary>
/// <remarks>
/// For data on the heap, proper pinning is necessary during
/// use. Failure to do so will result in memory corruption and crashes.
/// </remarks>
/// <param name="value">Reference of the first array element</param>
/// <param name="length">Number of elements on the array</param>
public ArrayPtr(ref T value, int length)
{
_ptr = (IntPtr)Unsafe.AsPointer(ref value);
Length = length;
}
/// <summary>
/// Creates a new array from a given pointer.
/// </summary>
/// <param name="ptr">Array base pointer</param>
/// <param name="length">Number of elements on the array</param>
public ArrayPtr(T* ptr, int length)
{
_ptr = (IntPtr)ptr;
Length = length;
}
/// <summary>
/// Creates a new array from a given pointer.
/// </summary>
/// <param name="ptr">Array base pointer</param>
/// <param name="length">Number of elements on the array</param>
public ArrayPtr(IntPtr ptr, int length)
{
_ptr = ptr;
Length = length;
}
/// <summary>
/// Splits the array starting at the specified position.
/// </summary>
/// <param name="start">Index where the new array should start</param>
/// <returns>New array starting at the specified position</returns>
public ArrayPtr<T> Slice(int start) => new ArrayPtr<T>(ref this[start], Length - start);
/// <summary>
/// Gets a span from the array.
/// </summary>
/// <returns>Span of the array</returns>
public Span<T> AsSpan() => Length == 0 ? Span<T>.Empty : MemoryMarshal.CreateSpan(ref this[0], Length);
/// <summary>
/// Gets the array base pointer.
/// </summary>
/// <returns>Base pointer</returns>
public T* ToPointer() => (T*)_ptr;
public override bool Equals(object obj)
{
return obj is ArrayPtr<T> other && Equals(other);
}
public bool Equals([AllowNull] ArrayPtr<T> other)
{
return _ptr == other._ptr && Length == other.Length;
}
public override int GetHashCode()
{
return HashCode.Combine(_ptr, Length);
}
public static bool operator ==(ArrayPtr<T> left, ArrayPtr<T> right)
{
return left.Equals(right);
}
public static bool operator !=(ArrayPtr<T> left, ArrayPtr<T> right)
{
return !(left == right);
}
}
}

View file

@ -0,0 +1,12 @@
namespace Ryujinx.Common.Memory
{
public class Box<T> where T : unmanaged
{
public T Data;
public Box()
{
Data = new T();
}
}
}

View file

@ -0,0 +1,51 @@
using System;
using System.Buffers;
using System.Threading;
namespace Ryujinx.Common.Memory
{
public sealed partial class ByteMemoryPool
{
/// <summary>
/// Represents a <see cref="IMemoryOwner{Byte}"/> that wraps an array rented from
/// <see cref="ArrayPool{Byte}.Shared"/> and exposes it as <see cref="Memory{Byte}"/>
/// with a length of the requested size.
/// </summary>
private sealed class ByteMemoryPoolBuffer : IMemoryOwner<byte>
{
private byte[] _array;
private readonly int _length;
public ByteMemoryPoolBuffer(int length)
{
_array = ArrayPool<byte>.Shared.Rent(length);
_length = length;
}
/// <summary>
/// Returns a <see cref="Memory{Byte}"/> belonging to this owner.
/// </summary>
public Memory<byte> Memory
{
get
{
byte[] array = _array;
ObjectDisposedException.ThrowIf(array is null, this);
return new Memory<byte>(array, 0, _length);
}
}
public void Dispose()
{
var array = Interlocked.Exchange(ref _array, null);
if (array != null)
{
ArrayPool<byte>.Shared.Return(array);
}
}
}
}
}

View file

@ -0,0 +1,108 @@
using System;
using System.Buffers;
namespace Ryujinx.Common.Memory
{
/// <summary>
/// Provides a pool of re-usable byte array instances.
/// </summary>
public sealed partial class ByteMemoryPool
{
private static readonly ByteMemoryPool _shared = new ByteMemoryPool();
/// <summary>
/// Constructs a <see cref="ByteMemoryPool"/> instance. Private to force access through
/// the <see cref="ByteMemoryPool.Shared"/> instance.
/// </summary>
private ByteMemoryPool()
{
// No implementation
}
/// <summary>
/// Retrieves a shared <see cref="ByteMemoryPool"/> instance.
/// </summary>
public static ByteMemoryPool Shared => _shared;
/// <summary>
/// Returns the maximum buffer size supported by this pool.
/// </summary>
public int MaxBufferSize => Array.MaxLength;
/// <summary>
/// Rents a byte memory buffer from <see cref="ArrayPool{Byte}.Shared"/>.
/// The buffer may contain data from a prior use.
/// </summary>
/// <param name="length">The buffer's required length in bytes</param>
/// <returns>A <see cref="IMemoryOwner{Byte}"/> wrapping the rented memory</returns>
/// <exception cref="ArgumentOutOfRangeException"></exception>
public IMemoryOwner<byte> Rent(long length)
=> RentImpl(checked((int)length));
/// <summary>
/// Rents a byte memory buffer from <see cref="ArrayPool{Byte}.Shared"/>.
/// The buffer may contain data from a prior use.
/// </summary>
/// <param name="length">The buffer's required length in bytes</param>
/// <returns>A <see cref="IMemoryOwner{Byte}"/> wrapping the rented memory</returns>
/// <exception cref="ArgumentOutOfRangeException"></exception>
public IMemoryOwner<byte> Rent(ulong length)
=> RentImpl(checked((int)length));
/// <summary>
/// Rents a byte memory buffer from <see cref="ArrayPool{Byte}.Shared"/>.
/// The buffer may contain data from a prior use.
/// </summary>
/// <param name="length">The buffer's required length in bytes</param>
/// <returns>A <see cref="IMemoryOwner{Byte}"/> wrapping the rented memory</returns>
/// <exception cref="ArgumentOutOfRangeException"></exception>
public IMemoryOwner<byte> Rent(int length)
=> RentImpl(length);
/// <summary>
/// Rents a byte memory buffer from <see cref="ArrayPool{Byte}.Shared"/>.
/// The buffer's contents are cleared (set to all 0s) before returning.
/// </summary>
/// <param name="length">The buffer's required length in bytes</param>
/// <returns>A <see cref="IMemoryOwner{Byte}"/> wrapping the rented memory</returns>
/// <exception cref="ArgumentOutOfRangeException"></exception>
public IMemoryOwner<byte> RentCleared(long length)
=> RentCleared(checked((int)length));
/// <summary>
/// Rents a byte memory buffer from <see cref="ArrayPool{Byte}.Shared"/>.
/// The buffer's contents are cleared (set to all 0s) before returning.
/// </summary>
/// <param name="length">The buffer's required length in bytes</param>
/// <returns>A <see cref="IMemoryOwner{Byte}"/> wrapping the rented memory</returns>
/// <exception cref="ArgumentOutOfRangeException"></exception>
public IMemoryOwner<byte> RentCleared(ulong length)
=> RentCleared(checked((int)length));
/// <summary>
/// Rents a byte memory buffer from <see cref="ArrayPool{Byte}.Shared"/>.
/// The buffer's contents are cleared (set to all 0s) before returning.
/// </summary>
/// <param name="length">The buffer's required length in bytes</param>
/// <returns>A <see cref="IMemoryOwner{Byte}"/> wrapping the rented memory</returns>
/// <exception cref="ArgumentOutOfRangeException"></exception>
public IMemoryOwner<byte> RentCleared(int length)
{
var buffer = RentImpl(length);
buffer.Memory.Span.Clear();
return buffer;
}
private static ByteMemoryPoolBuffer RentImpl(int length)
{
if ((uint)length > Array.MaxLength)
{
throw new ArgumentOutOfRangeException(nameof(length), length, null);
}
return new ByteMemoryPoolBuffer(length);
}
}
}

View file

@ -0,0 +1,21 @@
namespace Ryujinx.Common.Memory
{
/// <summary>
/// Array interface.
/// </summary>
/// <typeparam name="T">Element type</typeparam>
public interface IArray<T> where T : unmanaged
{
/// <summary>
/// Used to index the array.
/// </summary>
/// <param name="index">Element index</param>
/// <returns>Element at the specified index</returns>
ref T this[int index] { get; }
/// <summary>
/// Number of elements on the array.
/// </summary>
int Length { get; }
}
}

View file

@ -0,0 +1,99 @@
using Microsoft.IO;
using System;
namespace Ryujinx.Common.Memory
{
public static class MemoryStreamManager
{
private static readonly RecyclableMemoryStreamManager _shared = new RecyclableMemoryStreamManager();
/// <summary>
/// We don't expose the <c>RecyclableMemoryStreamManager</c> directly because version 2.x
/// returns them as <c>MemoryStream</c>. This Shared class is here to a) offer only the GetStream() versions we use
/// and b) return them as <c>RecyclableMemoryStream</c> so we don't have to cast.
/// </summary>
public static class Shared
{
/// <summary>
/// Retrieve a new <c>MemoryStream</c> object with no tag and a default initial capacity.
/// </summary>
/// <returns>A <c>RecyclableMemoryStream</c></returns>
public static RecyclableMemoryStream GetStream()
=> new RecyclableMemoryStream(_shared);
/// <summary>
/// Retrieve a new <c>MemoryStream</c> object with the contents copied from the provided
/// buffer. The provided buffer is not wrapped or used after construction.
/// </summary>
/// <remarks>The new stream's position is set to the beginning of the stream when returned.</remarks>
/// <param name="buffer">The byte buffer to copy data from</param>
/// <returns>A <c>RecyclableMemoryStream</c></returns>
public static RecyclableMemoryStream GetStream(byte[] buffer)
=> GetStream(Guid.NewGuid(), null, buffer, 0, buffer.Length);
/// <summary>
/// Retrieve a new <c>MemoryStream</c> object with the given tag and with contents copied from the provided
/// buffer. The provided buffer is not wrapped or used after construction.
/// </summary>
/// <remarks>The new stream's position is set to the beginning of the stream when returned.</remarks>
/// <param name="buffer">The byte buffer to copy data from</param>
/// <returns>A <c>RecyclableMemoryStream</c></returns>
public static RecyclableMemoryStream GetStream(ReadOnlySpan<byte> buffer)
=> GetStream(Guid.NewGuid(), null, buffer);
/// <summary>
/// Retrieve a new <c>RecyclableMemoryStream</c> object with the given tag and with contents copied from the provided
/// buffer. The provided buffer is not wrapped or used after construction.
/// </summary>
/// <remarks>The new stream's position is set to the beginning of the stream when returned.</remarks>
/// <param name="id">A unique identifier which can be used to trace usages of the stream</param>
/// <param name="tag">A tag which can be used to track the source of the stream</param>
/// <param name="buffer">The byte buffer to copy data from</param>
/// <returns>A <c>RecyclableMemoryStream</c></returns>
public static RecyclableMemoryStream GetStream(Guid id, string tag, ReadOnlySpan<byte> buffer)
{
RecyclableMemoryStream stream = null;
try
{
stream = new RecyclableMemoryStream(_shared, id, tag, buffer.Length);
stream.Write(buffer);
stream.Position = 0;
return stream;
}
catch
{
stream?.Dispose();
throw;
}
}
/// <summary>
/// Retrieve a new <c>RecyclableMemoryStream</c> object with the given tag and with contents copied from the provided
/// buffer. The provided buffer is not wrapped or used after construction.
/// </summary>
/// <remarks>The new stream's position is set to the beginning of the stream when returned</remarks>
/// <param name="id">A unique identifier which can be used to trace usages of the stream</param>
/// <param name="tag">A tag which can be used to track the source of the stream</param>
/// <param name="buffer">The byte buffer to copy data from</param>
/// <param name="offset">The offset from the start of the buffer to copy from</param>
/// <param name="count">The number of bytes to copy from the buffer</param>
/// <returns>A <c>RecyclableMemoryStream</c></returns>
public static RecyclableMemoryStream GetStream(Guid id, string tag, byte[] buffer, int offset, int count)
{
RecyclableMemoryStream stream = null;
try
{
stream = new RecyclableMemoryStream(_shared, id, tag, count);
stream.Write(buffer, offset, count);
stream.Position = 0;
return stream;
}
catch
{
stream?.Dispose();
throw;
}
}
}
}
}

View file

@ -0,0 +1,80 @@
using System.Runtime.InteropServices;
using System.Threading;
using static Ryujinx.Common.Memory.PartialUnmaps.PartialUnmapHelpers;
namespace Ryujinx.Common.Memory.PartialUnmaps
{
/// <summary>
/// A simple implementation of a ReaderWriterLock which can be used from native code.
/// </summary>
[StructLayout(LayoutKind.Sequential, Pack = 4)]
public struct NativeReaderWriterLock
{
public int WriteLock;
public int ReaderCount;
public static int WriteLockOffset;
public static int ReaderCountOffset;
/// <summary>
/// Populates the field offsets for use when emitting native code.
/// </summary>
static NativeReaderWriterLock()
{
NativeReaderWriterLock instance = new NativeReaderWriterLock();
WriteLockOffset = OffsetOf(ref instance, ref instance.WriteLock);
ReaderCountOffset = OffsetOf(ref instance, ref instance.ReaderCount);
}
/// <summary>
/// Acquires the reader lock.
/// </summary>
public void AcquireReaderLock()
{
// Must take write lock for a very short time to become a reader.
while (Interlocked.CompareExchange(ref WriteLock, 1, 0) != 0) { }
Interlocked.Increment(ref ReaderCount);
Interlocked.Exchange(ref WriteLock, 0);
}
/// <summary>
/// Releases the reader lock.
/// </summary>
public void ReleaseReaderLock()
{
Interlocked.Decrement(ref ReaderCount);
}
/// <summary>
/// Upgrades to a writer lock. The reader lock is temporarily released while obtaining the writer lock.
/// </summary>
public void UpgradeToWriterLock()
{
// Prevent any more threads from entering reader.
// If the write lock is already taken, wait for it to not be taken.
Interlocked.Decrement(ref ReaderCount);
while (Interlocked.CompareExchange(ref WriteLock, 1, 0) != 0) { }
// Wait for reader count to drop to 0, then take the lock again as the only reader.
while (Interlocked.CompareExchange(ref ReaderCount, 1, 0) != 0) { }
}
/// <summary>
/// Downgrades from a writer lock, back to a reader one.
/// </summary>
public void DowngradeFromWriterLock()
{
// Release the WriteLock.
Interlocked.Exchange(ref WriteLock, 0);
}
}
}

View file

@ -0,0 +1,20 @@
using System.Runtime.CompilerServices;
namespace Ryujinx.Common.Memory.PartialUnmaps
{
static class PartialUnmapHelpers
{
/// <summary>
/// Calculates a byte offset of a given field within a struct.
/// </summary>
/// <typeparam name="T">Struct type</typeparam>
/// <typeparam name="T2">Field type</typeparam>
/// <param name="storage">Parent struct</param>
/// <param name="target">Field</param>
/// <returns>The byte offset of the given field in the given struct</returns>
public static int OffsetOf<T, T2>(ref T2 storage, ref T target)
{
return (int)Unsafe.ByteOffset(ref Unsafe.As<T2, T>(ref storage), ref target);
}
}
}

View file

@ -0,0 +1,163 @@
using System;
using System.Runtime.CompilerServices;
using System.Runtime.InteropServices;
using System.Runtime.InteropServices.Marshalling;
using System.Runtime.Versioning;
using System.Threading;
using static Ryujinx.Common.Memory.PartialUnmaps.PartialUnmapHelpers;
namespace Ryujinx.Common.Memory.PartialUnmaps
{
/// <summary>
/// State for partial unmaps. Intended to be used on Windows.
/// </summary>
[StructLayout(LayoutKind.Sequential, Pack = 1)]
public partial struct PartialUnmapState
{
public NativeReaderWriterLock PartialUnmapLock;
public int PartialUnmapsCount;
public ThreadLocalMap<int> LocalCounts;
public readonly static int PartialUnmapLockOffset;
public readonly static int PartialUnmapsCountOffset;
public readonly static int LocalCountsOffset;
public readonly static IntPtr GlobalState;
[SupportedOSPlatform("windows")]
[LibraryImport("kernel32.dll")]
private static partial int GetCurrentThreadId();
[SupportedOSPlatform("windows")]
[LibraryImport("kernel32.dll", SetLastError = true)]
private static partial IntPtr OpenThread(int dwDesiredAccess, [MarshalAs(UnmanagedType.Bool)] bool bInheritHandle, uint dwThreadId);
[SupportedOSPlatform("windows")]
[LibraryImport("kernel32.dll", SetLastError = true)]
[return: MarshalAs (UnmanagedType.Bool)]
private static partial bool CloseHandle(IntPtr hObject);
[SupportedOSPlatform("windows")]
[LibraryImport("kernel32.dll", SetLastError = true)]
[return: MarshalAs(UnmanagedType.Bool)]
private static partial bool GetExitCodeThread(IntPtr hThread, out uint lpExitCode);
/// <summary>
/// Creates a global static PartialUnmapState and populates the field offsets.
/// </summary>
static unsafe PartialUnmapState()
{
PartialUnmapState instance = new PartialUnmapState();
PartialUnmapLockOffset = OffsetOf(ref instance, ref instance.PartialUnmapLock);
PartialUnmapsCountOffset = OffsetOf(ref instance, ref instance.PartialUnmapsCount);
LocalCountsOffset = OffsetOf(ref instance, ref instance.LocalCounts);
int size = Unsafe.SizeOf<PartialUnmapState>();
GlobalState = Marshal.AllocHGlobal(size);
Unsafe.InitBlockUnaligned((void*)GlobalState, 0, (uint)size);
}
/// <summary>
/// Resets the global state.
/// </summary>
public static unsafe void Reset()
{
int size = Unsafe.SizeOf<PartialUnmapState>();
Unsafe.InitBlockUnaligned((void*)GlobalState, 0, (uint)size);
}
/// <summary>
/// Gets a reference to the global state.
/// </summary>
/// <returns>A reference to the global state</returns>
public static unsafe ref PartialUnmapState GetRef()
{
return ref Unsafe.AsRef<PartialUnmapState>((void*)GlobalState);
}
/// <summary>
/// Checks if an access violation handler should retry execution due to a fault caused by partial unmap.
/// </summary>
/// <remarks>
/// Due to Windows limitations, <see cref="UnmapView"/> might need to unmap more memory than requested.
/// The additional memory that was unmapped is later remapped, however this leaves a time gap where the
/// memory might be accessed but is unmapped. Users of the API must compensate for that by catching the
/// access violation and retrying if it happened between the unmap and remap operation.
/// This method can be used to decide if retrying in such cases is necessary or not.
///
/// This version of the function is not used, but serves as a reference for the native
/// implementation in ARMeilleure.
/// </remarks>
/// <returns>True if execution should be retried, false otherwise</returns>
[SupportedOSPlatform("windows")]
public bool RetryFromAccessViolation()
{
PartialUnmapLock.AcquireReaderLock();
int threadID = GetCurrentThreadId();
int threadIndex = LocalCounts.GetOrReserve(threadID, 0);
if (threadIndex == -1)
{
// Out of thread local space... try again later.
PartialUnmapLock.ReleaseReaderLock();
return true;
}
ref int threadLocalPartialUnmapsCount = ref LocalCounts.GetValue(threadIndex);
bool retry = threadLocalPartialUnmapsCount != PartialUnmapsCount;
if (retry)
{
threadLocalPartialUnmapsCount = PartialUnmapsCount;
}
PartialUnmapLock.ReleaseReaderLock();
return retry;
}
/// <summary>
/// Iterates and trims threads in the thread -> count map that
/// are no longer active.
/// </summary>
[SupportedOSPlatform("windows")]
public void TrimThreads()
{
const uint ExitCodeStillActive = 259;
const int ThreadQueryInformation = 0x40;
Span<int> ids = LocalCounts.ThreadIds.AsSpan();
for (int i = 0; i < ids.Length; i++)
{
int id = ids[i];
if (id != 0)
{
IntPtr handle = OpenThread(ThreadQueryInformation, false, (uint)id);
if (handle == IntPtr.Zero)
{
Interlocked.CompareExchange(ref ids[i], 0, id);
}
else
{
GetExitCodeThread(handle, out uint exitCode);
if (exitCode != ExitCodeStillActive)
{
Interlocked.CompareExchange(ref ids[i], 0, id);
}
CloseHandle(handle);
}
}
}
}
}
}

View file

@ -0,0 +1,92 @@
using System.Runtime.InteropServices;
using System.Threading;
using static Ryujinx.Common.Memory.PartialUnmaps.PartialUnmapHelpers;
namespace Ryujinx.Common.Memory.PartialUnmaps
{
/// <summary>
/// A simple fixed size thread safe map that can be used from native code.
/// Integer thread IDs map to corresponding structs.
/// </summary>
/// <typeparam name="T">The value type for the map</typeparam>
[StructLayout(LayoutKind.Sequential, Pack = 1)]
public struct ThreadLocalMap<T> where T : unmanaged
{
public const int MapSize = 20;
public Array20<int> ThreadIds;
public Array20<T> Structs;
public static int ThreadIdsOffset;
public static int StructsOffset;
/// <summary>
/// Populates the field offsets for use when emitting native code.
/// </summary>
static ThreadLocalMap()
{
ThreadLocalMap<T> instance = new ThreadLocalMap<T>();
ThreadIdsOffset = OffsetOf(ref instance, ref instance.ThreadIds);
StructsOffset = OffsetOf(ref instance, ref instance.Structs);
}
/// <summary>
/// Gets the index of a given thread ID in the map, or reserves one.
/// When reserving a struct, its value is set to the given initial value.
/// Returns -1 when there is no space to reserve a new entry.
/// </summary>
/// <param name="threadId">Thread ID to use as a key</param>
/// <param name="initial">Initial value of the associated struct.</param>
/// <returns>The index of the entry, or -1 if none</returns>
public int GetOrReserve(int threadId, T initial)
{
// Try get a match first.
for (int i = 0; i < MapSize; i++)
{
int compare = Interlocked.CompareExchange(ref ThreadIds[i], threadId, threadId);
if (compare == threadId)
{
return i;
}
}
// Try get a free entry. Since the id is assumed to be unique to this thread, we know it doesn't exist yet.
for (int i = 0; i < MapSize; i++)
{
int compare = Interlocked.CompareExchange(ref ThreadIds[i], threadId, 0);
if (compare == 0)
{
Structs[i] = initial;
return i;
}
}
return -1;
}
/// <summary>
/// Gets the struct value for a given map entry.
/// </summary>
/// <param name="index">Index of the entry</param>
/// <returns>A reference to the struct value</returns>
public ref T GetValue(int index)
{
return ref Structs[index];
}
/// <summary>
/// Releases an entry from the map.
/// </summary>
/// <param name="index">Index of the entry to release</param>
public void Release(int index)
{
Interlocked.Exchange(ref ThreadIds[index], 0);
}
}
}

View file

@ -0,0 +1,68 @@
using System;
using System.Diagnostics.CodeAnalysis;
using System.Runtime.CompilerServices;
namespace Ryujinx.Common.Memory
{
/// <summary>
/// Represents a pointer to an unmanaged resource.
/// </summary>
/// <typeparam name="T">Type of the unmanaged resource</typeparam>
public unsafe struct Ptr<T> : IEquatable<Ptr<T>> where T : unmanaged
{
private IntPtr _ptr;
/// <summary>
/// Null pointer.
/// </summary>
public static Ptr<T> Null => new Ptr<T>() { _ptr = IntPtr.Zero };
/// <summary>
/// True if the pointer is null, false otherwise.
/// </summary>
public bool IsNull => _ptr == IntPtr.Zero;
/// <summary>
/// Gets a reference to the value.
/// </summary>
public ref T Value => ref Unsafe.AsRef<T>((void*)_ptr);
/// <summary>
/// Creates a new pointer to an unmanaged resource.
/// </summary>
/// <remarks>
/// For data on the heap, proper pinning is necessary during
/// use. Failure to do so will result in memory corruption and crashes.
/// </remarks>
/// <param name="value">Reference to the unmanaged resource</param>
public Ptr(ref T value)
{
_ptr = (IntPtr)Unsafe.AsPointer(ref value);
}
public override bool Equals(object obj)
{
return obj is Ptr<T> other && Equals(other);
}
public bool Equals([AllowNull] Ptr<T> other)
{
return _ptr == other._ptr;
}
public override int GetHashCode()
{
return _ptr.GetHashCode();
}
public static bool operator ==(Ptr<T> left, Ptr<T> right)
{
return left.Equals(right);
}
public static bool operator !=(Ptr<T> left, Ptr<T> right)
{
return !(left == right);
}
}
}

View file

@ -0,0 +1,89 @@
using System;
namespace Ryujinx.Common.Memory
{
/// <summary>
/// A struct that can represent both a Span and Array.
/// This is useful to keep the Array representation when possible to avoid copies.
/// </summary>
/// <typeparam name="T">Element Type</typeparam>
public readonly ref struct SpanOrArray<T> where T : unmanaged
{
public readonly T[] Array;
public readonly ReadOnlySpan<T> Span;
/// <summary>
/// Create a new SpanOrArray from an array.
/// </summary>
/// <param name="array">Array to store</param>
public SpanOrArray(T[] array)
{
Array = array;
Span = ReadOnlySpan<T>.Empty;
}
/// <summary>
/// Create a new SpanOrArray from a readonly span.
/// </summary>
/// <param name="array">Span to store</param>
public SpanOrArray(ReadOnlySpan<T> span)
{
Array = null;
Span = span;
}
/// <summary>
/// Return the contained array, or convert the span if necessary.
/// </summary>
/// <returns>An array containing the data</returns>
public T[] ToArray()
{
return Array ?? Span.ToArray();
}
/// <summary>
/// Return a ReadOnlySpan from either the array or ReadOnlySpan.
/// </summary>
/// <returns>A ReadOnlySpan containing the data</returns>
public ReadOnlySpan<T> AsSpan()
{
return Array ?? Span;
}
/// <summary>
/// Cast an array to a SpanOrArray.
/// </summary>
/// <param name="array">Source array</param>
public static implicit operator SpanOrArray<T>(T[] array)
{
return new SpanOrArray<T>(array);
}
/// <summary>
/// Cast a ReadOnlySpan to a SpanOrArray.
/// </summary>
/// <param name="span">Source ReadOnlySpan</param>
public static implicit operator SpanOrArray<T>(ReadOnlySpan<T> span)
{
return new SpanOrArray<T>(span);
}
/// <summary>
/// Cast a Span to a SpanOrArray.
/// </summary>
/// <param name="span">Source Span</param>
public static implicit operator SpanOrArray<T>(Span<T> span)
{
return new SpanOrArray<T>(span);
}
/// <summary>
/// Cast a SpanOrArray to a ReadOnlySpan
/// </summary>
/// <param name="spanOrArray">Source SpanOrArray</param>
public static implicit operator ReadOnlySpan<T>(SpanOrArray<T> spanOrArray)
{
return spanOrArray.AsSpan();
}
}
}

View file

@ -0,0 +1,56 @@
using System;
using System.Runtime.CompilerServices;
using System.Runtime.InteropServices;
namespace Ryujinx.Common.Memory
{
public ref struct SpanReader
{
private ReadOnlySpan<byte> _input;
public int Length => _input.Length;
public SpanReader(ReadOnlySpan<byte> input)
{
_input = input;
}
public T Read<T>() where T : unmanaged
{
T value = MemoryMarshal.Cast<byte, T>(_input)[0];
_input = _input.Slice(Unsafe.SizeOf<T>());
return value;
}
public ReadOnlySpan<byte> GetSpan(int size)
{
ReadOnlySpan<byte> data = _input.Slice(0, size);
_input = _input.Slice(size);
return data;
}
public ReadOnlySpan<byte> GetSpanSafe(int size)
{
return GetSpan((int)Math.Min((uint)_input.Length, (uint)size));
}
public T ReadAt<T>(int offset) where T : unmanaged
{
return MemoryMarshal.Cast<byte, T>(_input.Slice(offset))[0];
}
public ReadOnlySpan<byte> GetSpanAt(int offset, int size)
{
return _input.Slice(offset, size);
}
public void Skip(int size)
{
_input = _input.Slice(size);
}
}
}

View file

@ -0,0 +1,45 @@
using System;
using System.Runtime.CompilerServices;
using System.Runtime.InteropServices;
namespace Ryujinx.Common.Memory
{
public ref struct SpanWriter
{
private Span<byte> _output;
public int Length => _output.Length;
public SpanWriter(Span<byte> output)
{
_output = output;
}
public void Write<T>(T value) where T : unmanaged
{
MemoryMarshal.Cast<byte, T>(_output)[0] = value;
_output = _output.Slice(Unsafe.SizeOf<T>());
}
public void Write(ReadOnlySpan<byte> data)
{
data.CopyTo(_output.Slice(0, data.Length));
_output = _output.Slice(data.Length);
}
public void WriteAt<T>(int offset, T value) where T : unmanaged
{
MemoryMarshal.Cast<byte, T>(_output.Slice(offset))[0] = value;
}
public void WriteAt(int offset, ReadOnlySpan<byte> data)
{
data.CopyTo(_output.Slice(offset, data.Length));
}
public void Skip(int size)
{
_output = _output.Slice(size);
}
}
}

View file

@ -0,0 +1,654 @@
using System;
using System.Runtime.InteropServices;
namespace Ryujinx.Common.Memory
{
public struct Array1<T> : IArray<T> where T : unmanaged
{
T _e0;
public int Length => 1;
public ref T this[int index] => ref AsSpan()[index];
public Span<T> AsSpan() => MemoryMarshal.CreateSpan(ref _e0, 1);
}
public struct Array2<T> : IArray<T> where T : unmanaged
{
#pragma warning disable CS0169
T _e0;
Array1<T> _other;
#pragma warning restore CS0169
public int Length => 2;
public ref T this[int index] => ref AsSpan()[index];
public Span<T> AsSpan() => MemoryMarshal.CreateSpan(ref _e0, 2);
}
public struct Array3<T> : IArray<T> where T : unmanaged
{
#pragma warning disable CS0169
T _e0;
Array2<T> _other;
#pragma warning restore CS0169
public int Length => 3;
public ref T this[int index] => ref AsSpan()[index];
public Span<T> AsSpan() => MemoryMarshal.CreateSpan(ref _e0, 3);
}
public struct Array4<T> : IArray<T> where T : unmanaged
{
#pragma warning disable CS0169
T _e0;
Array3<T> _other;
#pragma warning restore CS0169
public int Length => 4;
public ref T this[int index] => ref AsSpan()[index];
public Span<T> AsSpan() => MemoryMarshal.CreateSpan(ref _e0, 4);
}
public struct Array5<T> : IArray<T> where T : unmanaged
{
#pragma warning disable CS0169
T _e0;
Array4<T> _other;
#pragma warning restore CS0169
public int Length => 5;
public ref T this[int index] => ref AsSpan()[index];
public Span<T> AsSpan() => MemoryMarshal.CreateSpan(ref _e0, 5);
}
public struct Array6<T> : IArray<T> where T : unmanaged
{
#pragma warning disable CS0169
T _e0;
Array5<T> _other;
#pragma warning restore CS0169
public int Length => 6;
public ref T this[int index] => ref AsSpan()[index];
public Span<T> AsSpan() => MemoryMarshal.CreateSpan(ref _e0, 6);
}
public struct Array7<T> : IArray<T> where T : unmanaged
{
#pragma warning disable CS0169
T _e0;
Array6<T> _other;
#pragma warning restore CS0169
public int Length => 7;
public ref T this[int index] => ref AsSpan()[index];
public Span<T> AsSpan() => MemoryMarshal.CreateSpan(ref _e0, 7);
}
public struct Array8<T> : IArray<T> where T : unmanaged
{
#pragma warning disable CS0169
T _e0;
Array7<T> _other;
#pragma warning restore CS0169
public int Length => 8;
public ref T this[int index] => ref AsSpan()[index];
public Span<T> AsSpan() => MemoryMarshal.CreateSpan(ref _e0, 8);
}
public struct Array9<T> : IArray<T> where T : unmanaged
{
#pragma warning disable CS0169
T _e0;
Array8<T> _other;
#pragma warning restore CS0169
public int Length => 9;
public ref T this[int index] => ref AsSpan()[index];
public Span<T> AsSpan() => MemoryMarshal.CreateSpan(ref _e0, 9);
}
public struct Array10<T> : IArray<T> where T : unmanaged
{
#pragma warning disable CS0169
T _e0;
Array9<T> _other;
#pragma warning restore CS0169
public int Length => 10;
public ref T this[int index] => ref AsSpan()[index];
public Span<T> AsSpan() => MemoryMarshal.CreateSpan(ref _e0, 10);
}
public struct Array11<T> : IArray<T> where T : unmanaged
{
#pragma warning disable CS0169
T _e0;
Array10<T> _other;
#pragma warning restore CS0169
public int Length => 11;
public ref T this[int index] => ref AsSpan()[index];
public Span<T> AsSpan() => MemoryMarshal.CreateSpan(ref _e0, 11);
}
public struct Array12<T> : IArray<T> where T : unmanaged
{
#pragma warning disable CS0169
T _e0;
Array11<T> _other;
#pragma warning restore CS0169
public int Length => 12;
public ref T this[int index] => ref AsSpan()[index];
public Span<T> AsSpan() => MemoryMarshal.CreateSpan(ref _e0, 12);
}
public struct Array13<T> : IArray<T> where T : unmanaged
{
#pragma warning disable CS0169
T _e0;
Array12<T> _other;
#pragma warning restore CS0169
public int Length => 13;
public ref T this[int index] => ref AsSpan()[index];
public Span<T> AsSpan() => MemoryMarshal.CreateSpan(ref _e0, 13);
}
public struct Array14<T> : IArray<T> where T : unmanaged
{
#pragma warning disable CS0169
T _e0;
Array13<T> _other;
#pragma warning restore CS0169
public int Length => 14;
public ref T this[int index] => ref AsSpan()[index];
public Span<T> AsSpan() => MemoryMarshal.CreateSpan(ref _e0, 14);
}
public struct Array15<T> : IArray<T> where T : unmanaged
{
#pragma warning disable CS0169
T _e0;
Array14<T> _other;
#pragma warning restore CS0169
public int Length => 15;
public ref T this[int index] => ref AsSpan()[index];
public Span<T> AsSpan() => MemoryMarshal.CreateSpan(ref _e0, 15);
}
public struct Array16<T> : IArray<T> where T : unmanaged
{
#pragma warning disable CS0169
T _e0;
Array15<T> _other;
#pragma warning restore CS0169
public int Length => 16;
public ref T this[int index] => ref AsSpan()[index];
public Span<T> AsSpan() => MemoryMarshal.CreateSpan(ref _e0, 16);
}
public struct Array17<T> : IArray<T> where T : unmanaged
{
#pragma warning disable CS0169
T _e0;
Array16<T> _other;
#pragma warning restore CS0169
public int Length => 17;
public ref T this[int index] => ref AsSpan()[index];
public Span<T> AsSpan() => MemoryMarshal.CreateSpan(ref _e0, 17);
}
public struct Array18<T> : IArray<T> where T : unmanaged
{
#pragma warning disable CS0169
T _e0;
Array17<T> _other;
#pragma warning restore CS0169
public int Length => 18;
public ref T this[int index] => ref AsSpan()[index];
public Span<T> AsSpan() => MemoryMarshal.CreateSpan(ref _e0, 18);
}
public struct Array19<T> : IArray<T> where T : unmanaged
{
#pragma warning disable CS0169
T _e0;
Array18<T> _other;
#pragma warning restore CS0169
public int Length => 19;
public ref T this[int index] => ref AsSpan()[index];
public Span<T> AsSpan() => MemoryMarshal.CreateSpan(ref _e0, 19);
}
public struct Array20<T> : IArray<T> where T : unmanaged
{
#pragma warning disable CS0169
T _e0;
Array19<T> _other;
#pragma warning restore CS0169
public int Length => 20;
public ref T this[int index] => ref AsSpan()[index];
public Span<T> AsSpan() => MemoryMarshal.CreateSpan(ref _e0, 20);
}
public struct Array21<T> : IArray<T> where T : unmanaged
{
#pragma warning disable CS0169
T _e0;
Array20<T> _other;
#pragma warning restore CS0169
public int Length => 21;
public ref T this[int index] => ref AsSpan()[index];
public Span<T> AsSpan() => MemoryMarshal.CreateSpan(ref _e0, 21);
}
public struct Array22<T> : IArray<T> where T : unmanaged
{
#pragma warning disable CS0169
T _e0;
Array21<T> _other;
#pragma warning restore CS0169
public int Length => 22;
public ref T this[int index] => ref AsSpan()[index];
public Span<T> AsSpan() => MemoryMarshal.CreateSpan(ref _e0, 22);
}
public struct Array23<T> : IArray<T> where T : unmanaged
{
#pragma warning disable CS0169
T _e0;
Array22<T> _other;
#pragma warning restore CS0169
public int Length => 23;
public ref T this[int index] => ref AsSpan()[index];
public Span<T> AsSpan() => MemoryMarshal.CreateSpan(ref _e0, 23);
}
public struct Array24<T> : IArray<T> where T : unmanaged
{
#pragma warning disable CS0169
T _e0;
Array23<T> _other;
#pragma warning restore CS0169
public int Length => 24;
public ref T this[int index] => ref AsSpan()[index];
public Span<T> AsSpan() => MemoryMarshal.CreateSpan(ref _e0, 24);
}
public struct Array25<T> : IArray<T> where T : unmanaged
{
#pragma warning disable CS0169
T _e0;
Array24<T> _other;
#pragma warning restore CS0169
public int Length => 25;
public ref T this[int index] => ref AsSpan()[index];
public Span<T> AsSpan() => MemoryMarshal.CreateSpan(ref _e0, 25);
}
public struct Array26<T> : IArray<T> where T : unmanaged
{
#pragma warning disable CS0169
T _e0;
Array25<T> _other;
#pragma warning restore CS0169
public int Length => 26;
public ref T this[int index] => ref AsSpan()[index];
public Span<T> AsSpan() => MemoryMarshal.CreateSpan(ref _e0, 26);
}
public struct Array27<T> : IArray<T> where T : unmanaged
{
#pragma warning disable CS0169
T _e0;
Array26<T> _other;
#pragma warning restore CS0169
public int Length => 27;
public ref T this[int index] => ref AsSpan()[index];
public Span<T> AsSpan() => MemoryMarshal.CreateSpan(ref _e0, 27);
}
public struct Array28<T> : IArray<T> where T : unmanaged
{
#pragma warning disable CS0169
T _e0;
Array27<T> _other;
#pragma warning restore CS0169
public int Length => 28;
public ref T this[int index] => ref AsSpan()[index];
public Span<T> AsSpan() => MemoryMarshal.CreateSpan(ref _e0, 28);
}
public struct Array29<T> : IArray<T> where T : unmanaged
{
#pragma warning disable CS0169
T _e0;
Array28<T> _other;
#pragma warning restore CS0169
public int Length => 29;
public ref T this[int index] => ref AsSpan()[index];
public Span<T> AsSpan() => MemoryMarshal.CreateSpan(ref _e0, 29);
}
public struct Array30<T> : IArray<T> where T : unmanaged
{
#pragma warning disable CS0169
T _e0;
Array29<T> _other;
#pragma warning restore CS0169
public int Length => 30;
public ref T this[int index] => ref AsSpan()[index];
public Span<T> AsSpan() => MemoryMarshal.CreateSpan(ref _e0, 30);
}
public struct Array31<T> : IArray<T> where T : unmanaged
{
#pragma warning disable CS0169
T _e0;
Array30<T> _other;
#pragma warning restore CS0169
public int Length => 31;
public ref T this[int index] => ref AsSpan()[index];
public Span<T> AsSpan() => MemoryMarshal.CreateSpan(ref _e0, 31);
}
public struct Array32<T> : IArray<T> where T : unmanaged
{
#pragma warning disable CS0169
T _e0;
Array31<T> _other;
#pragma warning restore CS0169
public int Length => 32;
public ref T this[int index] => ref AsSpan()[index];
public Span<T> AsSpan() => MemoryMarshal.CreateSpan(ref _e0, 32);
}
public struct Array33<T> : IArray<T> where T : unmanaged
{
#pragma warning disable CS0169
T _e0;
Array32<T> _other;
#pragma warning restore CS0169
public int Length => 33;
public ref T this[int index] => ref AsSpan()[index];
public Span<T> AsSpan() => MemoryMarshal.CreateSpan(ref _e0, 33);
}
public struct Array34<T> : IArray<T> where T : unmanaged
{
#pragma warning disable CS0169
T _e0;
Array33<T> _other;
#pragma warning restore CS0169
public int Length => 34;
public ref T this[int index] => ref AsSpan()[index];
public Span<T> AsSpan() => MemoryMarshal.CreateSpan(ref _e0, 34);
}
public struct Array35<T> : IArray<T> where T : unmanaged
{
#pragma warning disable CS0169
T _e0;
Array34<T> _other;
#pragma warning restore CS0169
public int Length => 35;
public ref T this[int index] => ref AsSpan()[index];
public Span<T> AsSpan() => MemoryMarshal.CreateSpan(ref _e0, 35);
}
public struct Array36<T> : IArray<T> where T : unmanaged
{
#pragma warning disable CS0169
T _e0;
Array35<T> _other;
#pragma warning restore CS0169
public int Length => 36;
public ref T this[int index] => ref AsSpan()[index];
public Span<T> AsSpan() => MemoryMarshal.CreateSpan(ref _e0, 36);
}
public struct Array37<T> : IArray<T> where T : unmanaged
{
#pragma warning disable CS0169
T _e0;
Array36<T> _other;
#pragma warning restore CS0169
public int Length => 37;
public ref T this[int index] => ref AsSpan()[index];
public Span<T> AsSpan() => MemoryMarshal.CreateSpan(ref _e0, 37);
}
public struct Array38<T> : IArray<T> where T : unmanaged
{
#pragma warning disable CS0169
T _e0;
Array37<T> _other;
#pragma warning restore CS0169
public int Length => 38;
public ref T this[int index] => ref AsSpan()[index];
public Span<T> AsSpan() => MemoryMarshal.CreateSpan(ref _e0, 38);
}
public struct Array39<T> : IArray<T> where T : unmanaged
{
#pragma warning disable CS0169
T _e0;
Array38<T> _other;
#pragma warning restore CS0169
public int Length => 39;
public ref T this[int index] => ref AsSpan()[index];
public Span<T> AsSpan() => MemoryMarshal.CreateSpan(ref _e0, 39);
}
public struct Array40<T> : IArray<T> where T : unmanaged
{
#pragma warning disable CS0169
T _e0;
Array39<T> _other;
#pragma warning restore CS0169
public int Length => 40;
public ref T this[int index] => ref AsSpan()[index];
public Span<T> AsSpan() => MemoryMarshal.CreateSpan(ref _e0, 40);
}
public struct Array41<T> : IArray<T> where T : unmanaged
{
#pragma warning disable CS0169
T _e0;
Array40<T> _other;
#pragma warning restore CS0169
public int Length => 41;
public ref T this[int index] => ref AsSpan()[index];
public Span<T> AsSpan() => MemoryMarshal.CreateSpan(ref _e0, 41);
}
public struct Array42<T> : IArray<T> where T : unmanaged
{
#pragma warning disable CS0169
T _e0;
Array41<T> _other;
#pragma warning restore CS0169
public int Length => 42;
public ref T this[int index] => ref AsSpan()[index];
public Span<T> AsSpan() => MemoryMarshal.CreateSpan(ref _e0, 42);
}
public struct Array43<T> : IArray<T> where T : unmanaged
{
#pragma warning disable CS0169
T _e0;
Array42<T> _other;
#pragma warning restore CS0169
public int Length => 43;
public ref T this[int index] => ref AsSpan()[index];
public Span<T> AsSpan() => MemoryMarshal.CreateSpan(ref _e0, 43);
}
public struct Array44<T> : IArray<T> where T : unmanaged
{
#pragma warning disable CS0169
T _e0;
Array43<T> _other;
#pragma warning restore CS0169
public int Length => 44;
public ref T this[int index] => ref AsSpan()[index];
public Span<T> AsSpan() => MemoryMarshal.CreateSpan(ref _e0, 44);
}
public struct Array45<T> : IArray<T> where T : unmanaged
{
#pragma warning disable CS0169
T _e0;
Array44<T> _other;
#pragma warning restore CS0169
public int Length => 45;
public ref T this[int index] => ref AsSpan()[index];
public Span<T> AsSpan() => MemoryMarshal.CreateSpan(ref _e0, 45);
}
public struct Array46<T> : IArray<T> where T : unmanaged
{
#pragma warning disable CS0169
T _e0;
Array45<T> _other;
#pragma warning restore CS0169
public int Length => 46;
public ref T this[int index] => ref AsSpan()[index];
public Span<T> AsSpan() => MemoryMarshal.CreateSpan(ref _e0, 46);
}
public struct Array47<T> : IArray<T> where T : unmanaged
{
#pragma warning disable CS0169
T _e0;
Array46<T> _other;
#pragma warning restore CS0169
public int Length => 47;
public ref T this[int index] => ref AsSpan()[index];
public Span<T> AsSpan() => MemoryMarshal.CreateSpan(ref _e0, 47);
}
public struct Array48<T> : IArray<T> where T : unmanaged
{
#pragma warning disable CS0169
T _e0;
Array47<T> _other;
#pragma warning restore CS0169
public int Length => 48;
public ref T this[int index] => ref AsSpan()[index];
public Span<T> AsSpan() => MemoryMarshal.CreateSpan(ref _e0, 48);
}
public struct Array49<T> : IArray<T> where T : unmanaged
{
#pragma warning disable CS0169
T _e0;
Array48<T> _other;
#pragma warning restore CS0169
public int Length => 49;
public ref T this[int index] => ref AsSpan()[index];
public Span<T> AsSpan() => MemoryMarshal.CreateSpan(ref _e0, 49);
}
public struct Array50<T> : IArray<T> where T : unmanaged
{
#pragma warning disable CS0169
T _e0;
Array49<T> _other;
#pragma warning restore CS0169
public int Length => 50;
public ref T this[int index] => ref AsSpan()[index];
public Span<T> AsSpan() => MemoryMarshal.CreateSpan(ref _e0, 50);
}
public struct Array51<T> : IArray<T> where T : unmanaged
{
#pragma warning disable CS0169
T _e0;
Array50<T> _other;
#pragma warning restore CS0169
public int Length => 51;
public ref T this[int index] => ref AsSpan()[index];
public Span<T> AsSpan() => MemoryMarshal.CreateSpan(ref _e0, 51);
}
public struct Array52<T> : IArray<T> where T : unmanaged
{
#pragma warning disable CS0169
T _e0;
Array51<T> _other;
#pragma warning restore CS0169
public int Length => 52;
public ref T this[int index] => ref AsSpan()[index];
public Span<T> AsSpan() => MemoryMarshal.CreateSpan(ref _e0, 52);
}
public struct Array53<T> : IArray<T> where T : unmanaged
{
#pragma warning disable CS0169
T _e0;
Array52<T> _other;
#pragma warning restore CS0169
public int Length => 53;
public ref T this[int index] => ref AsSpan()[index];
public Span<T> AsSpan() => MemoryMarshal.CreateSpan(ref _e0, 53);
}
public struct Array54<T> : IArray<T> where T : unmanaged
{
#pragma warning disable CS0169
T _e0;
Array53<T> _other;
#pragma warning restore CS0169
public int Length => 54;
public ref T this[int index] => ref AsSpan()[index];
public Span<T> AsSpan() => MemoryMarshal.CreateSpan(ref _e0, 54);
}
public struct Array55<T> : IArray<T> where T : unmanaged
{
#pragma warning disable CS0169
T _e0;
Array54<T> _other;
#pragma warning restore CS0169
public int Length => 55;
public ref T this[int index] => ref AsSpan()[index];
public Span<T> AsSpan() => MemoryMarshal.CreateSpan(ref _e0, 55);
}
public struct Array56<T> : IArray<T> where T : unmanaged
{
#pragma warning disable CS0169
T _e0;
Array55<T> _other;
#pragma warning restore CS0169
public int Length => 56;
public ref T this[int index] => ref AsSpan()[index];
public Span<T> AsSpan() => MemoryMarshal.CreateSpan(ref _e0, 56);
}
public struct Array57<T> : IArray<T> where T : unmanaged
{
#pragma warning disable CS0169
T _e0;
Array56<T> _other;
#pragma warning restore CS0169
public int Length => 57;
public ref T this[int index] => ref AsSpan()[index];
public Span<T> AsSpan() => MemoryMarshal.CreateSpan(ref _e0, 57);
}
public struct Array58<T> : IArray<T> where T : unmanaged
{
#pragma warning disable CS0169
T _e0;
Array57<T> _other;
#pragma warning restore CS0169
public int Length => 58;
public ref T this[int index] => ref AsSpan()[index];
public Span<T> AsSpan() => MemoryMarshal.CreateSpan(ref _e0, 58);
}
public struct Array59<T> : IArray<T> where T : unmanaged
{
#pragma warning disable CS0169
T _e0;
Array58<T> _other;
#pragma warning restore CS0169
public int Length => 59;
public ref T this[int index] => ref AsSpan()[index];
public Span<T> AsSpan() => MemoryMarshal.CreateSpan(ref _e0, 59);
}
public struct Array60<T> : IArray<T> where T : unmanaged
{
#pragma warning disable CS0169
T _e0;
Array59<T> _other;
#pragma warning restore CS0169
public int Length => 60;
public ref T this[int index] => ref AsSpan()[index];
public Span<T> AsSpan() => MemoryMarshal.CreateSpan(ref _e0, 60);
}
public struct Array61<T> : IArray<T> where T : unmanaged
{
#pragma warning disable CS0169
T _e0;
Array60<T> _other;
#pragma warning restore CS0169
public int Length => 61;
public ref T this[int index] => ref AsSpan()[index];
public Span<T> AsSpan() => MemoryMarshal.CreateSpan(ref _e0, 61);
}
public struct Array62<T> : IArray<T> where T : unmanaged
{
#pragma warning disable CS0169
T _e0;
Array61<T> _other;
#pragma warning restore CS0169
public int Length => 62;
public ref T this[int index] => ref AsSpan()[index];
public Span<T> AsSpan() => MemoryMarshal.CreateSpan(ref _e0, 62);
}
public struct Array63<T> : IArray<T> where T : unmanaged
{
#pragma warning disable CS0169
T _e0;
Array62<T> _other;
#pragma warning restore CS0169
public int Length => 63;
public ref T this[int index] => ref AsSpan()[index];
public Span<T> AsSpan() => MemoryMarshal.CreateSpan(ref _e0, 63);
}
public struct Array64<T> : IArray<T> where T : unmanaged
{
#pragma warning disable CS0169
T _e0;
Array63<T> _other;
#pragma warning restore CS0169
public int Length => 64;
public ref T this[int index] => ref AsSpan()[index];
public Span<T> AsSpan() => MemoryMarshal.CreateSpan(ref _e0, 64);
}
public struct Array73<T> : IArray<T> where T : unmanaged
{
#pragma warning disable CS0169
T _e0;
Array64<T> _other;
Array8<T> _other2;
#pragma warning restore CS0169
public int Length => 73;
public ref T this[int index] => ref AsSpan()[index];
public Span<T> AsSpan() => MemoryMarshal.CreateSpan(ref _e0, 73);
}
}

View file

@ -0,0 +1,77 @@
using System;
using System.Runtime.InteropServices;
namespace Ryujinx.Common.Memory
{
[StructLayout(LayoutKind.Sequential, Size = Size, Pack = 1)]
public struct ByteArray128 : IArray<byte>
{
private const int Size = 128;
byte _element;
public int Length => Size;
public ref byte this[int index] => ref AsSpan()[index];
public Span<byte> AsSpan() => MemoryMarshal.CreateSpan(ref _element, Size);
}
[StructLayout(LayoutKind.Sequential, Size = Size, Pack = 1)]
public struct ByteArray256 : IArray<byte>
{
private const int Size = 256;
byte _element;
public int Length => Size;
public ref byte this[int index] => ref AsSpan()[index];
public Span<byte> AsSpan() => MemoryMarshal.CreateSpan(ref _element, Size);
}
[StructLayout(LayoutKind.Sequential, Size = Size, Pack = 1)]
public struct ByteArray512 : IArray<byte>
{
private const int Size = 512;
byte _element;
public int Length => Size;
public ref byte this[int index] => ref AsSpan()[index];
public Span<byte> AsSpan() => MemoryMarshal.CreateSpan(ref _element, Size);
}
[StructLayout(LayoutKind.Sequential, Size = Size, Pack = 1)]
public struct ByteArray1024 : IArray<byte>
{
private const int Size = 1024;
byte _element;
public int Length => Size;
public ref byte this[int index] => ref AsSpan()[index];
public Span<byte> AsSpan() => MemoryMarshal.CreateSpan(ref _element, Size);
}
[StructLayout(LayoutKind.Sequential, Size = Size, Pack = 1)]
public struct ByteArray2048 : IArray<byte>
{
private const int Size = 2048;
byte _element;
public int Length => Size;
public ref byte this[int index] => ref AsSpan()[index];
public Span<byte> AsSpan() => MemoryMarshal.CreateSpan(ref _element, Size);
}
[StructLayout(LayoutKind.Sequential, Size = Size, Pack = 1)]
public struct ByteArray4096 : IArray<byte>
{
private const int Size = 4096;
byte _element;
public int Length => Size;
public ref byte this[int index] => ref AsSpan()[index];
public Span<byte> AsSpan() => MemoryMarshal.CreateSpan(ref _element, Size);
}
}